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内容简介

自然语言处理被誉为“人工智能皇冠上的明珠”。深度学习等技术
的引入为自然语言处理技术带来了一场革命，尤其是近年来出现的基于
预训练模型的方法，已成为研究自然语言处理的新范式。本书在介绍自
然语言处理、深度学习等基本概念的基础上，重点介绍新的基于预训练
模型的自然语言处理技术。本书包括基础知识、预训练词向量和预训练
模型三部分：基础知识部分介绍自然语言处理和深度学习的基础知识和
基本工具；预训练词向量部分介绍静态词向量和动态词向量的预训练方
法及应用；预训练模型部分介绍几种典型的预训练语言模型及应用，以
及预训练模型的最新进展。除了理论知识，本书还有针对性地结合具体
案例提供相应的PyTorch代码实现，不仅能让读者对理论有更深刻的理
解，还能快速地实现自然语言处理模型，达到理论和实践的统一。

本书既适合具有一定机器学习基础的高等院校学生、研究机构的研
究者，以及希望深入研究自然语言处理算法的计算机工程师阅读，也适
合对人工智能、深度学习和自然语言处理感兴趣的学生和希望进入人工
智能应用领域的研究者参考。



推荐序

自然语言处理的目标是使得机器具有和人类一样的语言理解与运用
能力。在过去的十年里，自然语言处理经历了两次里程碑式的重要发
展。第一次是深度学习的勃兴，使得传统的特征工程方法被摒弃，而基
于深度神经网络的表示学习迅速成为自然语言处理的主流。第二次则是
2018年以来大规模预训练语言模型的应用，开启了基于“预训练+精
调”的新一代自然语言处理范式。每一次的发展都为自然语言处理系统
的能力带来了巨大的进步。与此同时，这些令人欣喜的发展也带给我们
很多关于语言智能的更本质的思考。由车万翔等人所著的《自然语言处
理：基于预训练模型的方法》一书从预训练模型的角度对这两次重要的
发展进行了系统性的论述，能够帮助读者深入理解这些技术背后的原
理、相互之间的联系以及潜在的局限性，对于当前学术界和工业界的相
关研究与应用都具有重要的价值。

本书包括三部分，共9章。书中从自然语言处理与神经网络的基础
知识出发，沿着预训练模型的发展轨迹系统讨论了静态词向量、动态词
向量，以及语言模型的预训练方法，还深入讨论了模型优化、蒸馏与压
缩、生成模型、多模态融合等前沿进展，内容上兼具广度与深度。本书
作者车万翔等人研发的语言技术平台LTP，是国内自然语言处理领域较
早、影响力大且仍在不断发展完善的开源平台之一。LTP的“进化”历
程也对应着作者对于自然语言处理不同时期范式变迁的思考与实践——
从最初发布时使用的传统机器学习方法，到基于深度学习的多任务学习
框架，再到近年来发布的基于预训练模型的统一框架。可以说，本书的
问世是作者多年深耕于自然语言处理领域的自然结果。

本书的一大特色是含有丰富的实践内容。作者均为活跃在科研一线
的青年学者，极具实战经验。书中为代表性的模型提供了规范的示例代
码以及实践指导，这对于刚刚进入自然语言处理领域并热爱实践与应用
的读者而言是一份难得的学习资源。



本书可以作为计算机科学、人工智能和机器学习专业的学生、研究
者，以及人工智能应用开发者的参考书，也适合高校教师和研究机构的
研究人员阅读。

孙茂松
欧洲科学院外籍院士

清华大学人工智能研究院常务副院长、计算机系教授



推荐语

自然语言处理被誉为“人工智能皇冠上的明珠”。近年来，以
BERT、GPT为代表的大规模预训练语言模型异军突起，使问答、检索、
摘要、阅读理解等自然语言处理任务的性能都得到了显著提升。《自然
语言处理：基于预训练模型的方法》一书深入浅出地阐述了预训练语言
模型技术，全面深入地分析了它的发展方向，非常适合人工智能和自然
语言处理领域的学习者和从事研发的人士阅读。读者可在较短的时间内
了解和掌握其关键技术并快速上手。特此推荐！

周明
创新工场首席科学家

微软亚洲研究院原副院长
中国计算机学会副理事长

国际计算语言学会（ACL）主席（2019年）

预训练语言模型是当今自然语言处理的核心技术。车万翔教授等人
所著的本书从基础知识、预训练词向量、预训练模型等几个方面全面系
统地介绍了该项技术。选题合理，立论明确，讲述清晰，出版及时。相
信每一位读者都会从中获得很大的收获。向大家推荐！

李航
ACL/IEEE Fellow

字节跳动人工智能实验室总监

在运动智能和感知智能突飞猛进的发展态势下，以自然语言处理为
核心的认知智能已成为人工智能极大的挑战。随着业界对认知智能重视
程度的持续提升，基于预训练模型的自然语言处理方法一经提出，便快
速席卷了诸多NLP任务。本书系统地介绍了该类方法，并配有丰富的实
践案例和代码，对于从事AI技术研究和相关行业的爱好者而言，是一本



不可多得的参考学习佳作！

胡郁
科大讯飞执行总裁



前言

自然语言是人类思维的载体和交流的基本工具，也是人类区别于动
物的根本标志，更是人类智能发展的重要外在体现形式。自然语言处理
（Natural Language Processing，NLP）主要研究用计算机理解和生成
自然语言的各种理论与方法，属于人工智能领域的一个重要的甚至核心
的分支。随着互联网的快速发展，网络文本规模呈爆炸性增长，为自然
语言处理提出了巨大的应用需求。同时，自然语言处理研究也为人们更
深刻地理解语言的机理和社会的机制提供了一条重要的途径，因此具有
重要的科学意义。

自然语言处理技术经历了从早期的理性主义到后来的经验主义的转
变。近十年来，深度学习技术快速发展，引发了自然语言处理领域一系
列的变革。但是基于深度学习的算法有一个严重的缺点，就是过度依赖
于大规模的有标注数据。2018年以来，以BERT、GPT为代表的超大规模
预训练语言模型恰好弥补了自然语言处理标注数据不足的这一缺点，帮
助自然语言处理取得了一系列的突破，使得包括阅读理解在内的众多自
然语言处理任务的性能都得到了大幅提高，在有些数据集上甚至达到或
超过了人类水平。那么，预训练模型是如何获得如此强大的威力甚
至“魔力”的呢？希望本书能够为各位读者揭开预训练模型的神秘面
纱。

本书主要内容

本书内容分为三部分：基础知识、预训练词向量和预训练模型。各
部分内容安排如下。



第1部分：基础知识。包括第2～4章，主要介绍自然语言处理和深
度学习的基础知识、基本工具集和常用数据集。

第2章首先介绍文本的向量表示方法，重点介绍词嵌入表示。其次
介绍自然语言处理的三大任务，包括语言模型、基础任务和应用任务。
虽然这些任务看似纷繁复杂，但是基本可以归纳为三类问题，即文本分
类问题、结构预测问题和序列到序列问题。最后介绍自然语言处理任务
的评价方法。

第3章首先介绍两种常用的自然语言处理基础工具集——NLTK和
LTP。其次介绍本书使用的深度学习框架PyTorch。最后介绍自然语言处
理中常用的大规模预训练数据。

第4章首先介绍自然语言处理中常用的四种神经网络模型：多层感
知器模型、卷积神经网络、循环神经网络，以及以Transformer为代表
的自注意力模型。其次介绍模型的参数优化方法。最后通过两个综合性
的实战项目，介绍如何使用深度学习模型解决一个实际的自然语言处理
问题。

第2部分：预训练词向量。包括第5、6章，主要介绍静态词向量和
动态词向量两种词向量的预训练方法及应用。

第5章介绍基于语言模型以及基于词共现两大类方法的静态词向量



的预训练技术，它们能够通过自监督学习方法，从未标注文本中获得词
汇级别的语义表示。最后提供对应的代码实现。

第6章介绍基于双向LSTM语言模型的动态词向量的预训练技术，它
们能够根据词语所在的不同上下文赋予不同的词向量表示，并作为特征
进一步提升下游任务的性能。最后同样提供对应的代码实现。

第3部分：预训练模型。包括第7～9章，首先介绍几种典型的预训
练语言模型及应用，其次介绍目前预训练语言模型的最新进展及融入更
多模态的预训练模型。

第7章首先介绍两种典型的预训练语言模型，即以GPT为代表的基于
自回归的预训练语言模型和以BERT为代表的基于非自回归的预训练语言
模型，其次介绍如何将预训练语言模型应用于典型的自然语言处理任
务。

第8章主要从四个方面介绍预训练语言模型最新的进展，包括用于
提高模型准确率的模型优化方法，用于提高模型表示能力的长文本处理
方法，用于提高模型可用性的模型蒸馏与压缩方法，以及用于提高模型
应用范围的生成模型。

第9章在介绍语言之外，还融合更多模态的预训练模型，包括多种
语言的融合、多种媒体的融合以及多种异构知识的融合等。

致谢

本书第1～4章及第9章部分内容由哈尔滨工业大学车万翔教授编
写；第5、6章及第8、9章部分内容由美国麻省理工学院（MIT）郭江博
士后编写；第7章及第8章主要内容由科大讯飞主管研究员崔一鸣编写。
全书由哈尔滨工业大学刘挺教授主审。

本书的编写参阅了大量的著作和相关文献，在此一并表示衷心的感
谢！

感谢宋亚东先生和电子工业出版社博文视点对本书的重视，以及为
本书出版所做的一切。

由于作者水平有限，书中不足及错误之处在所难免，敬请专家和读
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数学符号

数与数组

a　标量（整数或实数）

a　向量

A　矩阵

A　张量

In　n行n列的单位阵

I　单位阵，维度根据上下文确定

vw　词w的分布式向量表示

ew　词w的独热向量表示：[0，···，1，0，···，0]，w下标

处元素为1

diag（a）　对角阵，对角线上元素为a

索引

ai　向量a中索引i处的元素

a−i　向量a中除索引i之外的元素

wi：j　序列w中第i个元素到第j个元素组成的片段或子序列



Ai，j　矩阵A中第i行、第j列处的元素

Ai，：　矩阵A第i行

A：，j　矩阵A第j列

Ai，j，k　三维张量A中索引为（i， j， k）处的元素

A：，：，i　三维张量A的一个二维切片

集合

A　集合

R　实数集合

{0，1}　含0和1的二值集合

{0，1，···，n}　含0到n所有整数的集合

[a， b]　a到b的实数闭区间

（a， b]　a到b的实数左开右闭区间

线性代数

A⊤　矩阵A的转置

A⊙B　矩阵A与矩阵B的Hardamard乘积

det（A）　矩阵A的行列式

[x；y]　向量x与y的拼接

[U；V]　矩阵U 与V 沿行向量拼接

x·y或x⊤y　向量x与y的点积

微积分



　y对x的导数

　y对x的偏导数

∇xy　y对向量x的梯度

∇Xy　y对矩阵X的梯度

∇Xy　y对张量X的梯度

概率与信息论

a⊥b　随机变量a与b独立

a⊥b|c　随机变量a与b关于c条件独立

P （a）　离散变量概率分布

p（a）　连续变量概率分布

a∼P　随机变量a服从分布P

或 　f （x）在分布P （x）下的期望

Var（f（x））　f （x）在分布P （x）下的方差

Cov（f（x）， g（x））　f （x）与g（x）在分布P （x）下的协
方差

H （x）　随机变量x的信息熵

DKL（P∥Q）　概率分布P 与Q之间的KL散度

N （µ，Σ）　均值为µ、协方差为Σ的高斯分布



数据与概率分布

　数据集

x（i）　数据集中的第i个样本（输入）

y（i）或y（i）　第i个样本x（i）的标签（输出）

函数

　由定义域 到值域 的函数（映射）f

f ◦g　f 与g的复合函数

f （x；θ）　由参数θ定义的关于x的函数（也可直接写作f
（x），省略θ）

log x　x的自然对数

σ（x）　Sigmoid函数

∥x∥p　x的Lp范数

∥x∥　x的L2范数

1condition　条件指示函数：如果condition为真，则值为1；否则值
为0

以下给出本书中一些常用的写法

• 序列x= x1x2··· xn中第i个词xi的独热向量 和词向量

，词向量的维度是d。

• 词表 的大小是 。



• 时间或者空间复杂度 。

• 向量v和w的余弦相似度为cos（v， w）。

• 当优化损失函数 时，模型的参数定义为θ。

• 一个长度为n的序列x，经过总层数为L的预训练模型编码，最终

得到隐含层向量 （不强调层数时可略去上标[L]），其中第l

层的隐含层表示 ，d表示隐含层维度。



  第1章 

绪论

本章首先介绍了自然语言以及自然语言处理的基本概念，并总结了
自然语言处理所面临的8个难点，即语言的抽象性、组合性、歧义性、
进化性、非规范性、主观性、知识性及难移植性。正是由于这些难点的
存在，导致自然语言处理任务纷繁复杂，并产生了多种划分方式，如按
照任务层级，可以分为资源建设、基础任务、应用任务及应用系统四个
层级；按照任务类型，可以分为回归、分类、匹配、解析及生成五大问
题；按照研究对象的不同，可以分为形式、语义、推理及语用分析四个
等级。从历史上看，自然语言处理经过了将近60年的发展，期间经历了
理性主义和经验主义两大发展阶段。其中，经验主义又被分成了基于统
计模型、深度学习模型及最新的预训练模型三个阶段，尤其是“预训练
+精调”的方式，已成为自然语言处理的最新范式。

1.1 自然语言处理的概念

自然语言通常指的是人类语言（本书特指文本符号，而非语音信
号），是人类思维的载体和交流的基本工具，也是人类区别于动物的根
本标志，更是人类智能发展的外在体现形式之一。自然语言处理
（Natural Language Processing，NLP）主要研究用计算机理解和生成
自然语言的各种理论和方法，属于人工智能领域的一个重要甚至核心分
支，是计算机科学与语言学的交叉学科，又常被称为计算语言学
（Computational Linguistics，CL）。随着互联网的快速发展，网络
文本呈爆炸性增长，为自然语言处理提出了巨大的应用需求。同时，自
然语言处理研究也为人们更深刻地理解语言的机理和社会的机制提供了
一条重要的途径，因此具有重要的科学意义。

目前，人们普遍认为人工智能的发展经历了从运算智能到感知智
能，再到认知智能三个发展阶段。运算智能关注的是机器的基础运算和



存储能力，在这方面，机器已经完胜人类。感知智能则强调机器的模式
识别能力，如语音的识别以及图像的识别，目前机器在感知智能上的水
平基本达到甚至超过了人类的水平。然而，在涉及自然语言处理以及常
识建模和推理等研究的认知智能上，机器与人类还有很大的差距。

1.2 自然语言处理的难点

为什么计算机在处理自然语言时会如此困难呢？这主要是因为自然
语言具有高度的抽象性、近乎无穷变化的语义组合性、无处不在的歧义
性和进化性，以及理解语言通常需要背景知识和推理能力等，下面分别
进行具体的介绍。

1.2.1 抽象性

语言是由抽象符号构成的，每个符号背后都对应着现实世界或人们
头脑中的复杂概念，如“车”表示各种交通工具——汽车、火车、自行
车等，它们都具有共同的属性，有轮子、能载人或物等。

1.2.2 组合性

每种语言的基本符号单元都是有限的，如英文仅有26个字母，中国
国家标准GB 2312《信息交换用汉字编码字符集·基本集》共收录6，
763个汉字，即便是常用的单词，英文和中文也不过各几十万个。然
而，这些有限的符号却可以组合成无限的语义，即使是相同的词汇，由
于顺序不同，组合的语义也是不相同的，因此无法使用穷举的方法实现
对自然语言的理解。

1.2.3 歧义性

歧义性主要是由于语言的形式和语义之间存在多对多的对应关系导
致的，如：“苹果”一词，既可以指水果，也可以指一家公司或手机、
电脑等电子设备，这就是典型的一词多义现象。另外，对于两个句子，
如“曹雪芹写了红楼梦”和“红楼梦的作者是曹雪芹”，虽然它们的形
式不同，但是语义是相同的。



1.2.4 进化性

任何一种“活着”的语言都是在不断发展变化的，即语言具有明显
的进化性，也称创造性。这主要体现在两方面：一方面是新词汇层出不
穷，如“超女”“非典”“新冠”等；另一方面则体现在旧词汇被赋予
新的含义，如“腐败”“杯具”等。除了词汇，语言的语法等也在不断
变化，新的用法层出不穷。

1.2.5 非规范性

在互联网上，尤其是在用户产生的内容中，经常有一些有意或无意
造成的非规范文本，为自然语言处理带来了不小的挑战，如音近词
（“为什么”→“为森么”，“怎么了”→“肿么了”）、单词的简写
或变形（please→pls、cool→coooooooool）、新造词（“喜大普
奔”“不明觉厉”）和错别字等。

1.2.6 主观性

和感知智能问题不同，属于认知智能的自然语言处理问题往往具有
一定的主观性，这不但提高了数据标注的难度，还为准确评价系统的表
现带来了一定的困难。如在分词这一最基本的中文自然语言处理任务
中，关于什么是“词”的定义都尚不明确，比如“打篮球”是一个词还
是两个词呢？所以，在标注自然语言处理任务的数据时，往往需要对标
注人员进行一定的培训，使得很难通过众包的方式招募大量的标注人
员，导致自然语言处理任务的标注数据规模往往比图像识别、语音识别
的标注数据规模要小得多。此外，由于不同的分词系统往往标准都不尽
相同，所以通过准确率等客观指标对比不同的分词系统本身就是不客观
的。难以评价的问题在人机对话等任务中体现得更为明显，由于对话回
复的主观性，很难有一个所谓的标准回复，所以如何自动评价人机对话
系统仍然是一个开放的问题。

1.2.7 知识性

理解语言通常需要背景知识以及基于这些知识的推理能力。例如，



针对句子“张三打了李四，然后 倒了”，问其中的“他”指代的
是“张三”还是“李四”？只有具备了“被打的人更容易倒”这一知
识，才能推出“他”很可能指代的是“李四”。而如果将“倒”替换
为“笑”，则“他”很可能指代的是“张三”，因为“被打的人不太容
易笑”。但是，如何表示、获取并利用这些知识呢？目前的自然语言处
理技术并没有提供很好的答案。

1.2.8 难移植性

由于自然语言处理涉及的任务和领域众多，并且它们之间的差异较
大，造成了难移植性的问题。如下一节将要介绍的，自然语言处理任务
根据层级可以分为分词、词性标注、句法分析和语义分析等基础任务，
以及信息抽取、问答系统和对话系统等应用任务，由于这些任务的目标
和数据各不相同，很难使用统一的技术或模型加以解决，因此不得不针
对不同的任务设计不同的算法或训练不同的模型。另外，由于不同领域
的用词以及表达方式不尽相同，因此在一个领域上学习的模型也很难应
用于其他领域，这也给提高自然语言处理系统的可移植性带来了极大的
困难。

综上所述，由于自然语言处理面临的众多问题，使其成为目前制约
人工智能取得更大突破和更广泛应用的瓶颈之一。因此自然语言处理又
被誉为“人工智能皇冠上的明珠”，并吸引了越来越多的人工智能研究
者加入。

1.3 自然语言处理任务体系

1.3.1 任务层级

如1.2节所述，自然语言处理的一大特点是涉及的任务众多。按照
从低层到高层的方式，可以划分为资源建设、基础任务、应用任务和应
用系统四大类（见图1-1）。其中，资源建设主要包括两大类任务，即
语言学知识库建设和语料库资源建设。所谓语言学知识库，一般包括词
典、规则库等。词典（Dictionary）也称辞典（Thesaurus），除了可
以为词语提供音韵、句法或者语义解释以及示例等信息，还可以提供词
语之间的关系信息，如上下位、同义反义关系等。语料库资源指的是面



向某一自然语言处理任务所标注的数据。无论是语言学资源，还是语料
库资源的建设，都是上层各种自然语言处理技术的基础，需要花费大量
的人力和物力构建。

基础任务包括分词、词性标注、句法分析和语义分析等，这些任务
往往不直接面向终端用户，除了语言学上的研究价值，它们主要为上层
应用任务提供所需的特征。应用任务包括信息抽取、情感分析、问答系
统、机器翻译和对话系统等，它们往往可以作为产品直接被终端用户使
用。本书第2章将对这些任务进行更详细的介绍。

图1-1 自然语言处理任务层级

应用系统特指自然语言处理技术在某一领域的综合应用，又被称为
NLP+，即自然语言处理技术加上特定的应用领域。如在智能教育领域，
可以使用文本分类、回归等技术，实现主观试题的智能评阅，帮助教师
减轻工作量，提高工作效率；在智慧医疗领域，自然语言处理技术可以
帮助医生跟踪最新的医疗文献，帮助患者进行简单的自我诊断等；在智
能司法领域，可以使用阅读理解、文本匹配等技术，实现自动量刑、类
案检索和法条推荐等。总之，凡是涉及文本理解和生成的领域，自然语
言处理技术都可以发挥巨大的作用。

1.3.2 任务类别

虽然自然语言处理任务多种多样，刚涉足该领域的人可能会觉得眼
花缭乱、无从下手，但是这些复杂的任务基本上都可以归纳为回归、分
类、匹配、解析或生成五类问题中的一种。下面分别加以介绍：



1.回归问题

即将输入文本映射为一个连续的数值，如对作文的打分，对案件刑
期或罚款金额的预测等。

2.分类问题

又称为文本分类，即判断一个输入的文本所属的类别，如：在垃圾
邮件识别任务中，可以将一封邮件分为正常和垃圾两类；在情感分析
中，可以将用户的情感分为褒义、贬义或中性三类。

3.匹配问题

判断两个输入文本之间的关系，如：它们之间是复述或非复述两类
关系；或者蕴含、矛盾和无关三类关系。另外，识别两个输入文本之间
的相似性（0到1的数值）也属于匹配问题。

4.解析问题

特指对文本中的词语进行标注或识别词语之间的关系，典型的解析
问题包括词性标注、句法分析等，另外还有很多问题，如分词、命名实
体识别等也可以转化为解析问题。

5.生成问题

特指根据输入（可以是文本，也可以是图片、表格等其他类型数
据）生成一段自然语言，如机器翻译、文本摘要、图像描述生成等都是
典型的文本生成类任务。

1.3.3 研究对象与层次

此外，也可以通过对研究对象的区分，将自然语言处理研究分成多
个层次的任务。自然语言处理主要涉及“名”“实”“知”“境”之间
的关系，如图1-2所示。其中“名”指的是语言符号；“实”表示客观
世界中存在的事实或人的主观世界中的概念；“知”是指知识，包括常
识知识、世界知识和领域知识等；“境”则是指语言所处的环境。



图1-2 自然语言处理涉及的研究对象

随着涉及的研究对象越来越多，自然语言处理的研究由浅入深，可
以分为形式、语义、推理和语用四个层次。形式方面主要研究语言符号
层面的处理，研究的是“名”与“名”之间的关系，如通过编辑距离等
计算文本之间的相似度。语义方面主要研究语言符号和其背后所要表达
的含义之间的关系，即“名”和“实”之间的关系，如“手机余额不
足”和“电话欠费了”两个句子的表达方式完全不同，但是背后阐述的
事实是相同的。语义问题也是自然语言处理领域目前主要关注的问题。
推理是在语义研究的基础之上，进一步引入知识的运用，因此涉
及“名”“实”和“知”之间关系，这一点正体现了自然语言的知识
性。而语用则最为复杂，由于引入了语言所处的环境因素，通常表达的
是“言外之意”和“弦外之音”，同时涉及
了“名”“实”“知”“境”四个方面。例如，同样的一句话“你真讨
厌”，从字面意义上明显是贬义，而如果是情侣之间的对话，则含义可
能就不一样了。另外，语气、语调以及说话人的表情和动作也会影响其
要表达的含义。

1.4 自然语言处理技术发展历史

自然语言处理自诞生之日起经历了两大研究范式的转换，即理性主
义和经验主义，如图1-3所示。受到语料规模以及计算能力的限制，早
期的自然语言处理主要采用基于理性主义的规则方法，通过专家总结的
符号逻辑知识处理通用的自然语言现象。然而，由于自然语言的复杂
性，基于理性主义的规则方法在面对实际应用场景中的问题时显得力不
从心。



图1-3 自然语言处理技术发展阶段

从20世纪90年代开始，随着计算机运算速度和存储容量的快速增
加，以及统计学习方法的愈发成熟，使得以语料库为核心的统计学习方
法在自然语言处理领域得以大规模应用。由于大规模的语料库中包含了
大量关于语言的知识，使得基于语料库的统计自然语言处理方法能够更
加客观、准确和细致地捕获语言规律。在这一时期，词法分析、句法分
析、信息抽取、机器翻译和自动问答等领域的研究均取得了一定程度的
成功。

尽管基于统计学习的自然语言处理取得了一定程度的成功，但它也
有明显的局限性，也就是需要事先利用经验性规则将原始的自然语言输
入转化为机器能够处理的向量形式。这一转化过程（也称为特征提取）
需要细致的人工操作和一定的专业知识，因此也被称为特征工程。

2010年之后，随着基于深度神经网络的表示学习方法（也称深度学
习）的兴起，该方法直接端到端地学习各种自然语言处理任务，不再依
赖人工设计的特征。所谓表示学习，是指机器能根据输入自动地发现可
以用于识别或分类等任务的表示。具体地，深度学习模型在结构上通常
包含多层的处理层。底层的处理层接收原始输入，然后对其进行抽象处
理，其后的每一层都在前一层的结果上进行更深层次的抽象，最后一层
的抽象结果即为输入的一个表示，用于最终的目标任务。其中的抽象处
理，是由模型内部的参数进行控制的，而参数的更新值则是根据训练数
据上模型的表现，使用反向传播算法学习得到的。由此可以看出，深度
学习可以有效地避免统计学习方法中的人工特征提取操作，自动地发现
对于目标任务有效的表示。在语音识别、计算机视觉等领域，深度学习
已经取得了目前最好的效果，在自然语言处理领域，深度学习同样引发
了一系列的变革。

除了可以自动地发现有效特征，表示学习方法的另一个好处是打通
了不同任务之间的壁垒。传统统计学习方法需要针对不同的任务设计不
同的特征，这些特征往往是无法通用的。而表示学习能够将不同任务在



相同的向量空间内进行表示，从而具备跨任务迁移的能力。除了可以跨
任务，还可以实现跨语言甚至跨模态的迁移。综合利用多项任务、多种
语言和多个模态的数据，使得人工智能向更通用的方向迈进了一步。

同样，得益于深度学习技术的快速发展，自然语言处理的另一个主
要研究方向——自然语言生成也取得了长足进步。长期以来，自然语言
生成的研究几乎处于停滞状态，除了使用模板生成一些简单的语句，并
没有什么太有效的解决办法。随着基于深度学习的序列到序列生成框架
的提出，这种逐词的文本生成方法全面提升了生成技术的灵活性和实用
性，完全革新了机器翻译、文本摘要和人机对话等任务的技术范式。

虽然深度学习技术大幅提高了自然语言处理系统的准确率，但是基
于深度学习的算法有一个致命的缺点，就是过度依赖于大规模有标注数
据。对于语音识别、图像处理等感知类任务，标注数据相对容易获得，
如：在图像处理领域，人们已经为上百万幅的图像标注了相应的类别
（如ImageNet数据集）；用于语音识别的“语音--文本”平行语料库也
有几十万小时。然而，由于自然语言处理这一认知类任务所具有的“主
观性”特点，以及其所面对的任务和领域众多，使得标注大规模语料库
的时间过长，人力成本过于高昂，因此自然语言处理的标注数据往往不
够充足，很难满足深度学习模型训练的需要。

早期的静态词向量预训练模型，以及后来的动态词向量预训练模
型，特别是2018年以来，以BERT、GPT为代表的超大规模预训练语言模
型恰好弥补了自然语言处理标注数据不足的缺点，帮助自然语言处理取
得了一系列的突破，使得包括阅读理解在内的所有自然语言处理任务的
性能都得到了大幅提高，在有些数据集上达到或甚至超过了人类水平。

所谓模型预训练（Pre-train），即首先在一个原任务上预先训练
一个初始模型，然后在下游任务（也称目标任务）上继续对该模型进行
精调（Fine-tune），从而达到提高下游任务准确率的目的。在本质
上，这也是迁移学习（Transfer Learning）思想的一种应用。然而，
由于同样需要人工标注，导致原任务标注数据的规模往往也非常有限。
那么，如何获得更大规模的标注数据呢？

其实，文本自身的顺序性就是一种天然的标注数据，通过若干连续
出现的词语预测下一个词语（又称语言模型）就可以构成一项原任务。
由于图书、网页等文本数据规模近乎无限，所以，可以非常容易地获得
超大规模的预训练数据。有人将这种不需要人工标注数据的预训练学习



方法称为无监督学习（Unsupervised Learning），其实这并不准确，
因为学习的过程仍然是有监督的（Supervised），更准确的叫法应该是
自监督学习（Self-supervised Learning）。

为了能够刻画大规模数据中复杂的语言现象，还要求所使用的深度
学习模型容量足够大。基于自注意力的Transformer模型显著地提升了
对于自然语言的建模能力，是近年来具有里程碑意义的进展之一。要想
在可容忍的时间内，在如此大规模的数据上训练一个超大规模的
Transformer模型，也离不开以GPU、TPU为代表的现代并行计算硬件。
可以说，超大规模预训练语言模型完全依赖“蛮力”，在大数据、大模
型和大算力的加持下，使自然语言处理取得了长足的进步。如OpenAI推
出的GPT-3，是一个具有1，750亿个参数的巨大规模，无须接受任何特
定任务的训练，便可以通过小样本学习完成十余种文本生成任务，如问
答、风格迁移、网页生成和自动编曲等。目前，预训练模型已经成为自
然语言处理的新范式。

那么，预训练模型是如何获得如此强大威力甚至是“魔力”的呢？
希望本书能够为各位读者揭开预训练模型的神秘面纱。



  第2章 

自然语言处理基础

本章首先介绍自然语言处理中最基础、最本质的问题，即文本如何
在计算机内表示，才能达到易于处理和计算的目的。其中，词的表示大
体经过了早期的独热（One-hot）表示，到后来的分布式表示，再到最
近的词向量三个阶段。至于更长文本的表示方法，本章只对最简单的词
袋模型加以介绍，后续章节将介绍其他更好的表示方法。接着介绍三大
类自然语言处理任务，即：语言模型、基础任务以及应用任务。其中，
基础任务包括中文分词、词性标注、句法分析和语义分析等，应用任务
包括信息抽取、情感分析、问答系统、机器翻译和对话系统等。由于这
些任务基本可以归纳为文本分类、结构预测和序列到序列三大类问题，
所以同时介绍这三大类问题的解决思路。最后，介绍自然语言处理任务
的评价方法，主要包括针对确定答案的准确率和F值，针对非确定答案
的BLEU值，以及针对开放答案的人工评价等。

2.1 文本的表示

若要利用计算机对自然语言进行处理，首先需要解决语言（本书特
指文本）在计算机内部的存储和计算问题。字符串（String）是文本最
自然，也是最常用的机内存储形式。所谓字符串，即字符序列，而其中
的一个字符本质上就是一个整数。基于字符串的文本表示方式可以实现
简单的字符串增删改查等编辑任务，并能够通过编辑距离等算法计算两
个字符串之间的字面相似度。在使用字符串表示（也叫符号表示）计算
文本的语义信息时，往往需要使用基于规则的方法。例如，要判断一个
句子的情感极性（褒义或贬义），规则的形式可能为：如果句子中出
现“喜欢”“漂亮”等词则为褒义；如果出现“讨厌”“丑陋”等词则
为贬义。

这种基于规则的方法存在很多问题。首先，规则的归纳依赖专家的



经验，需要花费大量的人力、物力和财力；其次，规则的表达能力有
限，很多语言现象无法用简单的规则描述；最后，随着规则的增多，规
则之间可能存在矛盾和冲突的情况，导致最终无法做出决策。例如，一
个句子中既出现了“喜欢”，又出现了“讨厌”，那么其极性应该是什
么呢？

为了解决基于规则的方法存在的以上诸多问题，基于机器学习的自
然语言处理技术应运而生，其最本质的思想是将文本表示为向量，其中
的每一维代表一个特征。在进行决策的时候，只要对这些特征的相应值
进行加权求和，就可以得到一个分数用于最终的判断。仍然以情感极性
识别为例，一种非常简单的将原始文本表示为向量的方法为：令向量 x
的每一维表示某个词在该文本中出现的次数，如x1表示“我”出现的次

数，x2表示“喜欢”出现的次数，x3表示“电影”出现的次数，x4表

示“讨厌”出现的次数等，如果某个词在该句中没有出现，则相应的维
数被设置为0。可见，输入向量x的大小恰好为整个词表（所有不相同的
词）的大小。然后就可以根据每个词对判断情感极性的重要性进行加
权，如“喜欢”（x2）对应的权重ω2可能比较大，而“讨厌”（x4）对

应的权重ω4可能比较小（可以为负数），对于情感极性影响比较小的

词，如“我”“电影”等，对应的权重可能会趋近于0。这种文本表示
的方法是两种技术的组合，即词的独热表示和文本的词袋表示。除了可
以应用于基于机器学习的方法，文本向量表示还可以用于计算两个文本
之间的相似度，即使用余弦函数等度量函数表示两个向量之间的相似
度，并应用于信息检索等任务。下面就以上提到的各项技术分别进行详
细的介绍。

2.1.1 词的独热表示

所谓词的独热表示，即使用一个词表大小的向量表示一个词（假设

词表为 ，则其大小为 ），然后将词表中的第i个词wi表示为向

量：

在该向量中，词表中第i个词在第i维上被设置为1，其余维均为0。



这种表示被称为词的独热表示或独热编码（One-hot Encoding）。

独热表示的一个主要问题就是不同词使用完全不同的向量进行表
示，这会导致即使两个词在语义上很相似，但是通过余弦函数来度量它
们之间的相似度时值却为0。另外，当应用于基于机器学习的方法时，
独热模型会导致数据稀疏（Data Sparsity）问题。例如，假设在训练
数据中只见过“漂亮”，在测试数据中出现了“美丽”，虽然它们之间
很相似，但是系统仍然无法恰当地对“美丽”进行加权。由于数据稀疏
问题，导致当训练数据规模有限时，很多语言现象没有被充分地学习
到。

为了缓解数据稀疏问题，传统的做法是除了词自身，再提取更多和
词相关的泛化特征，如词性特征、词义特征和词聚类特征等。以语义特

征为例，通过引入WordNet[1]等语义词典，可以获知“漂亮”和“美
丽”是同义词，然后引入它们的共同语义信息作为新的额外特征，从而
缓解同义词的独热表示不同的问题。可以说，在使用传统机器学习方法
解决自然语言处理问题时，研究者的很大一部分精力都用在了挖掘有效
的特征上。

2.1.2 词的分布式表示

词的独热表示容易导致数据稀疏问题，而通过引入特征的方法虽然
可以缓解该问题，但是特征的设计费时费力。那么有没有办法自动提取
特征并设置相应的特征值呢？

1.分布式语义假设

人们在阅读过程中遇到从未见过的词时，通常会根据上下文来推断
其含义以及相关属性。基于这种思想，John Rupert Firth于1957年提

出了分布式语义假设：词的含义可由其上下文的分布进行表示[1]。基于
该思想，可以利用大规模的未标注文本数据，根据每个词的上下文分布
对词进行表示。当然，分布式语义假设仅仅提供了一种语义建模的思
想。具体到表示形式和上下文的选择，以及如何利用上下文的分布特
征，都是需要解决的问题。

下面用一个具体的例子演示如何构建词的分布式表示。假设语料库
中有以下三句话：



假设以词所在句子中的其他词语作为上下文，那么可以创建如表2-

1所示的词语共现频次表。其中，词表 包含“我”“喜

欢”…“。”共10个词，即 。表中的每一项代表一个词wi与

另一个词wj（上下文）在同一个句子中的共现频次，每个词与自身的共

现频次设置为0。

表2-1 词语共现频次表

表中的每一行代表一个词的向量。通过计算两个向量之间的余弦函
数，就可以计算两个词的相似度。如“喜欢”和“爱”，由于有共同的
上下文“我”和“学习”，使得它们之间具有了一定的相似性，而不是
如独热表示一样，没有任何关系。

除了词，上下文的选择有很多种方式，而选择不同的上下文得到的
词向量表示性质会有所不同。例如，可以使用词在句子中的一个固定窗
口内的词作为其上下文，也可以使用所在的文档本身作为上下文。前者
得到的词表示将更多地反映词的局部性质：具有相似词法、句法属性的
词将会具有相似的向量表示。而后者将更多地反映词代表的主题信息。

不过，直接使用与上下文的共现频次作为词的向量表示，至少存在
以下三个问题：

• 高频词误导计算结果。如上例中，“我”“。”与其他词的共现
频次很高，导致实际上可能没有关系的两个词由于都和这些词共现过，



从而产生了较高的相似度。

• 共现频次无法反映词之间的高阶关系。例如，假设
词“A”与“B”共现过，“B”与“C”共现过，“C”与“D”共现过，
通过共现频次，只能获知“A”与“C”都与“B”共现过，它们之间存
在一定的关系，而“A”与“D”这种高阶的关系则无法知晓。

• 仍然存在稀疏性的问题。即向量中仍有大量的值为0，这一点从
表2-1中也可以看出。

下面分别介绍如何通过点互信息和奇异值分解两种技术来解决这些
问题。

2.点互信息

首先看如何解决高频词误导计算结果的问题。最直接的想法是：如
果一个词与很多词共现，则降低其权重；反之，如果一个词只与个别词
共现，则提高其权重。信息论中的点互信息（Pointwise Mutual
Information，PMI）恰好能够做到这一点。对于词w和上下文c，其PMI
为：

式中，P （w， c）、P （w）、P （c）分别是w与c的共现概率，
以及w和c分别出现的概率。可见，通过PMI公式计算，如果w和c的共现
概率（与频次正相关）较高，但是w或者c出现的概率也较高（高频
词），则最终的PMI值会变小；反之，即便w和c的共现概率不高，但是w
或者c出现的概率较低（低频词），则最终的PMI值也可能会比较大。从
而较好地解决高频词误导计算结果的问题。

可以通过最大似然估计（Maximum Likelihood Estimation，
MLE），分别计算相关的概率值。具体公式为：



式中：C（w， c）表示词w和上下文c在语料库中出现的次数（也称

为频次）； （w， c′）为表2-1按行求和； 为表

2-1按列求和； 为全部共现频次的和。代入以上3个
公式，式（2-2）可以进一步写为：

另外，当某个词与上下文之间共现次数较低时，可能会得到负的
PMI值。考虑到这种情况下的PMI不太稳定（具有较大的方差），在实际
应用中通常采用PPMI （Positive PMI）的形式，即：

接下来介绍PMI的代码实现。首先，将类似表2-1形式的共现频次表

定义为共现矩阵的形式，即 ，其中 为词表， 为全部
的上下文，Mij为词wi与上下文cj在语料库中的共现频次。然后，编写如

下代码计算PPMI：



则最终输出的结果为：



除了PMI，还有很多种其他方法可以达到类似的目的，如信息检索
中常用的TF-IDF等，在此不再加以赘述。

3.奇异值分解

下面看如何解决共现频次无法反映词之间高阶关系的问题。相关的
技术有很多，其中奇异值分解（Singular Value Decomposition，
SVD）是一种常见的做法。对共现矩阵M 进行奇异值分解：

式中： ， 为正交矩阵，满足U⊤U=V⊤V=I；

，是由r个奇异值（Singular Value）构成的对角矩阵。

若在Σ中仅保留d个（d＜ r）最大的奇异值（U和V 也只保留相应
的维度），则被称为截断奇异值分解（Truncated Singular Value
Decomposition）。截断奇异值分解实际上是对矩阵M 的低秩近似。

通过截断奇异值分解所得到的矩阵U中的每一行，则为相应词的d维
向量表示，该向量一般具有连续、低维和稠密的性质。由于U的各列相
互正交，因此可以认为词表示的每一维表达了该词的一种独立的“潜在
语义”，所以这种方法也被称作潜在语义分析（Latent Semantic

Analysis，LSA）。相应地，ΣV⊤的每一列也可以作为相应上下文的向
量表示。

在Python的numpy.linalg库中内置了SVD函数，只需要输入共现矩
阵，然后调用相应的函数即可。如：

执行结束后，矩阵U中的每一行为相应词经过奇异值分解后的向量
表示。如果仅保留前两维，每个词就可以显示为二维平面中的一个点，
然后使用下面的代码进行可视化：



截断奇异值分解结果如图2-1所示，可见：上下文比较相近的词在
空间上的距离比较近，如“深度”“学习”等；而“我”和“。”等高
频词则与其他词语距离比较远。

图2-1 截断奇异值分解结果

在信息检索等领域，也经常通过词与其出现的文档构成“词--文
档”共现矩阵，此时也可以通过以上介绍的奇异值分解技术进行降维，
并在低维空间（潜在语义空间）内计算词语或者文档之间的相似度，该
技术也称潜在语义索引（Latent Semantic Indexing，LSI）。

虽然在基于传统机器学习的方法中，词的分布式表示取得了不错的
效果，但是其仍然存在一些问题。首先，当共现矩阵规模较大时，奇异
值分解的运行速度非常慢；其次，如果想在原来语料库的基础上增加更
多的数据，则需要重新运行奇异值分解算法，代价非常高；另外，分布
式表示只能用于表示比较短的单元，如词或短语等，如果待表示的单元
比较长，如段落、句子等，由于与其共现的上下文会非常少，则无法获
得有效的分布式表示；最后，分布式表示一旦训练完成，则无法修改，
也就是说，无法根据具体的任务调整其表示方式。为了解决这些问题，



可引入一种新的词表示方式——词嵌入表示。

2.1.3 词嵌入表示

与词的分布式表示类似，词嵌入表示（Word Embedding）也使用一
个连续、低维、稠密的向量来表示词，经常直接简称为词向量，但与分
布式表示不同之处在于其赋值方式。在词的分布式表示中，向量值是通
过对语料库进行统计得到的，然后再经过点互信息、奇异值分解等变
换，一旦确定则无法修改。而词向量中的向量值，是随着目标任务的优
化过程自动调整的，也就是说，可以将词向量中的向量值看作模型的参
数，词向量的使用示例将在4.6.2节介绍。不过，如果目标任务的训练
数据比较少，学习合适的词向量难度会比较大，因此，利用自然语言文
本中所蕴含的自监督学习信号（即词与上下文的共现信息），先来预训
练词向量，往往会获得更好的结果。预训练模型的学习和使用也是本书
的重点内容，从第5章开始将进行详细的介绍。

2.1.4 文本的词袋表示

上面介绍了几种常见的词表示方法，那么如何通过词的表示构成更
长文本的表示呢？在此介绍一种最简单的文本表示方法——词袋（Bag-
Of-Words，BOW）表示。所谓词袋表示，就是假设文本中的词语是没有
顺序的集合，将文本中的全部词所对应的向量表示（既可以是独热表
示，也可以是分布式表示或词向量）相加，即构成了文本的向量表示。
如在使用独热表示时，文本向量表示的每一维恰好是相应的词在文本中
出现的次数。

虽然这种文本表示的方法非常简单、直观，但是其缺点也非常明
显：首先是没有考虑词的顺序信息，导致“张三打李四”和“李四打张
三”，虽然含义不同，但是由于它们包含的词相同，即使词序不同，词
袋表示的结果也是一样的；其次是无法融入上下文信息。比如要表
示“不喜欢”，只能将两个词的向量相加，无法进行更细致的语义操
作。当然，可以通过增加词表的方法加以解决，比如引入二元词
（Bigram）词表，将“不+喜欢”等作为“词”，然后同时学习二元词
的词向量表示。这种方法既能部分解决否定词的问题，也能部分解决局
部词序的问题，但是随着词表的增大，会引入更严重的数据稀疏问题。
深度学习技术的引入为解决这些问题提供了更好的方案，本书后续章节



将进行更详细的介绍。

2.2 自然语言处理任务

本节依次介绍三大类常见的自然语言处理任务，即：语言模型、基
础任务以及应用任务。

2.2.1 语言模型

语言模型（Language Model，LM）（也称统计语言模型）是描述自
然语言概率分布的模型，是一个非常基础和重要的自然语言处理任务。
利用语言模型，可以计算一个词序列或一句话的概率，也可以在给定上
文的条件下对接下来可能出现的词进行概率分布的估计。同时，语言模
型是一项天然的预训练任务，在基于预训练模型的自然语言处理方法中
起到非常重要的作用，因此这种预训练模型有时也被称为预训练语言模
型。本章将主要介绍经典的N元语言模型（N-gram Language Model），
现代的神经网络语言模型（Neural Network Language Model）将在第5
章进行详细的介绍。

1.N元语言模型

语言模型的基本任务是在给定词序列w1w2··· wt−1的条件下，对

下一时刻t可能出现的词wt的条件概率P （wt|w1w2··· wt−1）进行估

计。一般地，把w1w2··· wt−1称为wt的历史。例如，对于历史“我喜

欢”，希望得到下一个词为“读书”的概率，即：P（读书|我喜欢）。
在给定一个语料库时，该条件概率可以理解为当语料中出现“我喜
欢”时，有多少次下一个词为“读书”，然后通过最大似然估计进行计
算：

式中，C （·）表示相应词序列在语料库中出现的次数（也称为频
次）。

通过以上的条件概率，可以进一步计算一个句子出现的概率，即相



应单词序列的联合概率P （w1w2··· wl），式中l为序列的长度。可

以利用链式法则对该式进行分解，从而将其转化为条件概率的计算问
题，即：

式中，wi：j表示由位置i到j的子串wiwi+1··· wj。

然而，随着句子长度的增加，w1：i−1出现的次数会越来越少，甚至

从未出现过，那么P （wi|w1：i−1）则很可能为0，此时对于概率估计就

没有意义了。为了解决该问题，可以假设“下一个词出现的概率只依赖
于它前面n−1个词”，即：

该假设被称为马尔可夫假设（Markov Assumption）。满足这种假
设的模型，被称为N元语法或N元文法（N-gram）模型。特别地，当n=1
时，下一个词的出现独立于其历史，相应的一元语法通常记作
unigram。当n=2时，下一个词只依赖于前1个词，对应的二元语法记作
bigram。二元语法模型也被称为一阶马尔可夫链（Markov Chain）。类
似的，三元语法假设（n=3）也被称为二阶马尔可夫假设，相应的三元
语法记作trigram。n的取值越大，考虑的历史越完整。在unigram模型
中，由于词与词之间相互独立，因此它是与语序无关的。

以bigram模型为例，式（2-10）可转换为：

为了使 P （wi|wi−1） 对于 i=1 有意义，可在句子的开头增加一

个句首标记＜BOS＞（Begin Of Sentence），并设w0=＜BOS＞。同时，

也可以在句子的结尾增加一个句尾标记＜EOS＞（End Of

Sentence）[2]，设wl+1=＜EOS＞。

2.平滑



虽然马尔可夫假设（下一个词出现的概率只依赖于它前面n−1个
词）降低了句子概率为0的可能性，但是当n比较大或者测试句子中含有
未登录词（Out-Of-Vocabulary，OOV）时，仍然会出现“零概率”问
题。由于数据的稀疏性，训练数据很难覆盖测试数据中所有可能出现的
N-gram，但这并不意味着这些N-gram出现的概率为0。为了避免该问
题，需要使用平滑（Smoothing）技术调整概率估计的结果。本节将介
绍一种最基本，也最简单的平滑算法——折扣法。

折扣法（Discounting）平滑的基本思想是“损有余而补不足”，
即从频繁出现的N-gram中匀出一部分概率并分配给低频次（含零频次）
的N-gram，从而使得整体概率分布趋于均匀。

加1平滑（Add-one Discounting）是一种典型的折扣法，也被称为
拉普拉斯平滑（Laplace Smoothing），它假设所有N-gram的频次比实
际出现的频次多一次。例如，对于unigram模型来说，平滑之后的概率
可由以下公式计算：

式中， 是词表大小。所有未登录词可以映射为一个区别于其他
已知词汇的独立标记，如＜UNK＞。

相应的，对于bigram模型，则有：

在实际应用中，尤其当训练数据较小时，加1平滑将对低频次或零
频次事件给出过高的概率估计。一种自然的扩展是加δ平滑。在加δ平
滑中，假设所有事件的频次比实际出现的频次多δ次，其中0≤δ≤1。

以bigram语言模型为例，使用加δ平滑之后的条件概率为：

关于超参数δ的取值，需要用到开发集数据。根据开发集上的困惑
度对不同δ取值下的语言模型进行评价，最终将最优的δ用于测试集。



由于引入了马尔可夫假设，导致N元语言模型无法对长度超过N 的
长距离词语依赖关系进行建模，如果将 N 扩大，又会带来更严重的数
据稀疏问题，同时还会急剧增加模型的参数量（N-gram数目），为存储
和计算都带来极大的挑战。5.1节将要介绍的神经网络语言模型可以较
好地解决N元语言模型的这些缺陷。

3.语言模型性能评价

如何衡量一个语言模型的好坏呢？一种方法是将其应用于具体的外
部任务（如机器翻译），并根据该任务上指标的高低对语言模型进行评
价。这种方法也被称为“外部任务评价”，是最接近实际应用需求的一
种评价方法。但是，这种方式的计算代价较高，实现的难度也较大。因
此，目前最为常用的是基于困惑度（Perplexity，PPL）的“内部评
价”方式。

为了进行内部评价，首先将数据划分为不相交的两个集合，分别称

为训练集 和测试集 ，其中 用于估计语言模型的参数。

由该模型计算出的测试集的概率 则反映了模型在测试集上的泛

化能力[3]。

假设测试集 （每个句子的开始和结束分布增
加＜BOS＞与＜EOS＞标记），那么测试集的概率为：

困惑度则为模型分配给测试集中每一个词的概率的几何平均值的倒
数：

例如，对于bigram模型而言：



在实际计算过程中，考虑到多个概率的连乘可能带来浮点数下溢的
问题，通常需要将式（2-18）转化为对数和的形式：

困惑度越小，意味着单词序列的概率越大，也意味着模型能够更好
地解释测试集中的数据。需要注意的是，困惑度越低的语言模型并不总
是能在外部任务上取得更好的性能指标，但是两者之间通常呈现出一定
的正相关性。因此，困惑度可以作为一种快速评价语言模型性能的指
标，而在将其应用于下游任务时，仍然需要根据其在具体任务上的表现
进行评价。

2.2.2 自然语言处理基础任务

自然语言处理的一大特点是任务种类纷繁复杂，有多种划分的方
式。从处理顺序的角度，可以分为底层的基础任务以及上层的应用任
务。其中，基础任务往往是语言学家根据内省的方式定义的，输出的结
果往往作为整个系统的一个环节或者下游任务的额外语言学特征，而并
非面向普罗大众。本节介绍几种常见的基础任务，包括词法分析（分
词、词性标注）、句法分析和语义分析等。

1.中文分词

词（Word）是最小的能独立使用的音义结合体，是能够独立运用并
能够表达语义或语用内容的最基本单元。在以英语为代表的印欧语系
（Indo-European lan-guages）中，词之间通常用分隔符（空格等）区
分。但是在以汉语为代表的汉藏语系（Sino-Tibetan languages），以
及以阿拉伯语为代表的闪-含语系（Semito-Hamitic languages）中，
却不包含明显的词之间的分隔符。因此，为了进行后续的自然语言处
理，通常需要首先对不含分隔符的语言进行分词（Word
Segmentation）操作。本节以中文分词为例，介绍词的切分问题和最简
单的分词算法。

中文分词就是将一串连续的字符构成的句子分割成词语序列，



如“我喜欢读书”，分词后的结果为“我 喜欢 读书”。最简单的分词
算法叫作正向最大匹配（Forward Maximum Matching，FMM）分词算
法，即从前向后扫描句子中的字符串，尽量找到词典中较长的单词作为
分词的结果。具体代码如下：

通过下面的代码加载词典并调用正向最大匹配分词算法：



正向最大匹配分词算法存在的明显缺点是倾向于切分出较长的词，
这容易导致错误的切分结果，如“研究生命的起源”，由于“研究
生”是词典中的词，所以使用正向最大匹配分词算法的分词结果为“研
究生命的起源”，显然分词结果不正确。

这种情况一般被称为切分歧义问题，即同一个句子可能存在多种分
词结果，一旦分词错误，则会影响对句子的语义理解。正向最大匹配分
词算法除了存在切分歧义，对中文词的定义也不明确，如“哈尔滨
市”可以是一个词，也可以认为“哈尔滨”是一个词，“市”是一个
词。因此，目前存在多种中文分词的规范，根据不同规范又标注了不同
的数据集。

另外，就是未登录词问题，也就是说有一些词并没有收录在词典
中，如新词、命名实体、领域相关词和拼写错误词等。由于语言的动态
性，新词语的出现可谓是层出不穷，所以无法将全部的词都及时地收录
到词典中，因此，一个好的分词系统必须能够较好地处理未登录词问
题。相比于切分歧义问题，在真实应用环境中，由未登录词问题引起的
分词错误比例更高。

因此，分词任务本身也是一项富有挑战的自然语言处理基础任务，
可以使用包括本书介绍的多种机器学习方法加以解决，将在后续相关章
节中进行详细的介绍。

2.子词切分

一般认为，以英语为代表的印欧语系的语言，词语之间通常已有分
隔符（空格等）进行切分，无须再进行额外的分词处理。然而，由于这
些语言往往具有复杂的词形变化，如果仅以天然的分隔符进行切分，不
但会造成一定的数据稀疏问题，还会导致由于词表过大而降低处理速
度。如“computer”“computers”“computing”等，虽然它们语义相
近，但是被认为是截然不同的单词。传统的处理方法是根据语言学规
则，引入词形还原（Lemmatization）或者词干提取（Stemming）等任
务，提取出单词的词根，从而在一定程度上克服数据稀疏问题。其中，
词形还原指的是将变形的词语转换为原形，如将“computing”还原
为“compute”；而词干提取则是将前缀、后缀等去掉，保留词干
（Stem），如“computing”的词干为“comput”，可见，词干提取的
结果可能不是一个完整的单词。



词形还原或词干提取虽然在一定程度上解决了数据稀疏问题，但是
需要人工撰写大量的规则，这种基于规则的方法既不容易扩展到新的领
域，也不容易扩展到新的语言上。因此，基于统计的无监督子词
（Subword）切分任务应运而生，并在现代的预训练模型中使用。

所谓子词切分，就是将一个单词切分为若干连续的片段。目前有多
种常用的子词切分算法，它们的方法大同小异，基本的原理都是使用尽
量长且频次高的子词对单词进行切分。此处重点介绍常用的字节对编码
（Byte Pair Encoding，BPE）算法。

首先，BPE通过算法2.1构造子词词表。

算法2.1 BPE中子词词表构造算法

下面，通过一个例子说明如何构造子词词表。首先，假设语料库中
存在下列Python词典中的3个单词以及每个单词对应的频次。其中，每
个单词结尾增加了一个'＜/w＞'字符，并将每个单词切分成独立的字符
构成子词。

初始化的子词词表为3个单词包含的全部字符：

然后，统计单词内相邻的两个子词的频次，并选取频次最高的子词
对'e'和's'，合并成新的子词'es'（共出现9次），然后加入子词词表
中，并将语料库中不再存在的子词's'从子词词表中删除。此时，语料
库以及子词词表变为：



然后，合并下一个子词对'es'和't'，新的语料库和子词词表为：

重复以上过程，直到子词词表大小达到一个期望的词表大小为止。

构造好子词词表后，如何将一个单词切分成子词序列呢？可以采用
贪心的方法，即首先将子词词表按照子词的长度由大到小进行排序。然
后，从前向后遍历子词词表，依次判断一个子词是否为单词的子串，如
果是的话，则将该单词切分，然后继续向后遍历子词词表。如果子词词
表全部遍历结束，单词中仍然有子串没有被切分，那么这些子串一定为
低频串，则使用统一的标记，如'＜UNK＞'进行替换。

例如，对一个含有三个单词的句子['the＜/w＞'，'highest＜/w
＞'，'mountain＜/w＞']进行切分，假设排好序的词表为['errrr＜/w
＞'，'tain＜/w＞'，'moun'，'est＜/w＞'，'high'，'the＜/w
＞'，'a＜/w＞']，则子词切分的结果为['the＜/w＞'，'high'，'est
＜/w＞'，'moun'，'tain＜/w＞']。此过程也叫作对句子（单词序列）
进行编码。

那么，如何对一个编码后的句子进行解码，也就是还原成原始的句
子呢？此时，单词结尾字符'＜/w＞'便发挥作用了。只要将全部子词进
行拼接，然后将结尾字符替换为空格，就恰好为原始的句子了。

通过以上过程可以发现，BPE算法中的编码步骤需要遍历整个词
表，是一个非常耗时的过程。可以通过缓存技术加快编码的速度，即将
常见单词对应的编码结果事先存储下来，然后编码时通过查表的方式快
速获得编码的结果。对于查不到的单词再实际执行编码算法。由于高频
词能够覆盖语言中的大部分单词，因此该方法实际执行编码算法的次数
并不多，因此可以极大地提高编码过程的速度。

除了BPE，还有很多其他类似的子词切分方法，如WordPiece、



Unigram Lan-guage Model（ULM）算法等。其中，WordPiece与BPE算法
类似，也是每次从子词词表中选出两个子词进行合并。与BPE的最大区
别在于，选择两个子词进行合并的策略不同：BPE选择频次最高的相邻
子词合并，而WordPiece选择能够提升语言模型概率最大的相邻子词进
行合并。经过公式推导，提升语言模型概率最大的相邻子词具有最大的
互信息值，也就是两子词在语言模型上具有较强的关联性，它们经常在
语料中以相邻方式同时出现。

与WordPiece一样，ULM同样使用语言模型挑选子词。不同之处在
于，BPE和WordPiece算法的词表大小都是从小到大变化，属于增量法。
而ULM则是减量法，即先初始化一个大词表，根据评估准则不断丢弃词
表中的子词，直到满足限定条件。ULM算法考虑了句子的不同分词可
能，因而能够输出带概率的多个子词分段。

为了更方便地使用上述子词切分算法，Google推出了
SentencePiece开源工具包，其中集成了BPE、ULM等子词切分算法，并
支持Python、C++编程语言的调用，具有快速、轻量的优点。此外，通
过将句子看作Unicode编码序列，从而使其能够处理多种语言。

3.词性标注

词性是词语在句子中扮演的语法角色，也被称为词类（Part-Of-
Speech，POS）。例如，表示抽象或具体事物名字（如“计算机”）的
词被归为名词，而表示动作（如“打”）、状态（如“存在”）的词被
归为动词。词性可为句法分析、语义理解等提供帮助。

词性标注（POS Tagging）任务是指给定一个句子，输出句子中每
个词相应的词性。例如，当输入句子为：

则词性标注的输出为：

其中，斜杠后面的PN、VV、NN和PU分别代表代词、动词、名词和标

点符号[4]。



词性标注的主要难点在于歧义性，即一个词在不同的上下文中可能
有不同的词性。例如，上例中的“下”，既可以表示动词，也可以表示
方位词。因此，需要结合上下文确定词在句子中的具体词性。

4.句法分析

句法分析（Syntactic Parsing）的主要目标是给定一个句子，分
析句子的句法成分信息，例如主谓宾定状补等成分。最终的目标是将词
序列表示的句子转换成树状结构，从而有助于更准确地理解句子的含
义，并辅助下游自然语言处理任务。例如，对于以下两个句子：

虽然它们只相差一个“的”字，但是表达的语义是截然不同的，这
主要是因为两句话的主语不同。其中，第一句话的主语是“文章”，而
第二句话的主语是“转”的动作。通过对两句话进行句法分析，就可以
准确地获知各自的主语，从而推导出不同的语义。

典型的句法结构表示方法包含两种——短语结构句法表示和依存结
构句法表示。它们的不同点在于依托的文法规则不一样。其中，短语结
构句法表示依托上下文无关文法，属于一种层次性的表示方法。而依存
结构句法表示依托依存文法。图2-2对比了两种句法结构表示方法。在
短语结构句法表示中，S代表起始符号，NP和VP分别代表名词短语和动
词短语。在依存结构句法表示中，sub和obj分别表示主语和宾语，root
表示虚拟根节点，其指向整个句子的核心谓词。

5.语义分析

自然语言处理的核心任务即是让计算机“理解”自然语言所蕴含的
意义，即语义（Semantic）。本章前面介绍的文本向量表示，可以被认
为隐性地蕴含了很多语义信息。而一般意义上的语义分析指的是通过离
散的符号及结构显性地表示语义。根据待表示语言单元粒度以及语义表
示方法的不同，语义分析又可以被分为多种形式。



图2-2 两种句法结构表示方法结果对比

从词语的粒度考虑，一个词语可能具有多种语义（词义），例
如“打”，含义即可能是“攻击”（如“打人”），还可能
是“玩”（如“打篮球”），甚至“编织”（如“打毛衣”）等。根据
词语出现的不同上下文，确定其具体含义的自然语言处理任务被称为词
义消歧（Word Sense Disambiguation，WSD）。对于每个词可能具有的
词义，往往是通过语义词典确定的，如WordNet等。除了以上一词多义
情况，还有多词一义的情况，如“马铃薯”和“土豆”具有相同的词
义。

由于语言的语义组合性和进化性，无法像词语一样使用词典定义句
子、段落或篇章的语义，因此很难用统一的形式对句子等语言单元的语
义进行表示。众多的语言学流派提出了各自不同的语义表示形式，如语
义角色标注（Semantic Role Labeling，SRL）、语义依存分析
（Semantic Dependency Parsing，SDP）等。

其中，语义角色标注也称谓词论元结构（Predicate-Argument
Structure），即首先识别句子中可能的谓词（一般为动词），然后为
每个谓词确定所携带的语义角色（也称作论元），如表示动作发出者的
施事（Agent），表示动作承受者的受事（Patient）等。除了核心语义
角色，还有一类辅助描述动作的语言成分，被称为附加语义角色，如动
作发生的时间、地点和方式等。表2-2展示了一个语义角色标注的示
例，其中有两个谓词——“喜欢”和“下”，并针对每个谓词产生相应
的论元输出结果。

语义依存分析则利用通用图表示更丰富的语义信息。根据图中节点
类型的不同，又可分为两种表示——语义依存图（Semantic



Dependency Graph）表示和概念语义图（Conceptual Graph）表示。其
中，语义依存图中的节点是句子中实际存在的词语，在词与词之间创建
语义关系边。而概念语义图首先将句子转化为虚拟的概念节点，然后在
概念节点之间创建语义关系边。图2-3展示了一个语义依存图分析结果
示例。

表2-2 语义角色标注示例

图2-3 语义依存图分析结果示例

以上的语义表示方式属于通用语义表示方式，也就是针对各种语言
现象，设计统一的语义表示。除此之外，还有另一类语义分析用于专门
处理具体的任务，如将自然语言表示的数据库查询转换成结构化查询语
言（SQL）。例如，对于如表2-3所示的学生信息表，系统需要将用户的
自然语言查询：年龄大于18岁的学生姓名，转化为SQL语句：select
name where age ＞ 18；。

表2-3 学生信息表

2.2.3 自然语言处理应用任务

本节介绍信息抽取、情感分析、问答系统、机器翻译和对话系统等
自然语言处理应用任务。这些任务可以直接或间接地以产品的形式为终
端用户提供服务，是自然语言处理研究应用落地的主要技术。

1.信息抽取



信息抽取（Information Extraction，IE）是从非结构化的文本中
自动提取结构化信息的过程，这种结构化的信息方便计算机进行后续的
处理。另外，抽取的结果还可以作为新的知识加入知识库中。信息抽取
一般包含以下几个子任务。

命名实体识别（Named Entity Recognition，NER）是在文本中抽
取每个提及的命名实体并标注其类型，一般包括人名、地名和机构名
等，也包括专有名称等，如书名、电影名和药物名等。在文本中找到提
及的命名实体后，往往还需要将这些命名实体链接到知识库或知识图谱
中的具体实体，这一过程被称作实体链接（Entity Linking）。如“华
盛顿”既可以指美国首任总统，也可以指美国首都，需要根据上下文进
行判断，这一过程类似于词义消歧任务。

关系抽取（Relation Extraction）用于识别和分类文本中提及的
实体之间的语义关系，如夫妻、子女、工作单位和地理空间上的位置关
系等二元关系。

事件抽取（Event Extraction）的任务是从文本中识别人们感兴趣
的事件以及事件所涉及的时间、地点和人物等关键元素。其中，事件往
往使用文本中提及的具体触发词（Trigger）定义。可见，事件抽取与
语义角色标注任务较为类似，其中触发词对应语义角色标注中的谓词，
而事件元素则可认为是语义角色标注中的论元。

事件的发生时间往往比较关键，因此时间表达式（Temporal
Expression）识别也被认为是重要的信息抽取子任务，一般包括两种类
型的时间：绝对时间（日期、星期、月份和节假日等）和相对时间（如
明天、两年前等）。使用时间表达归一化（Temporal Expression
Normalization）将这些时间表达式映射到特定的日期或一天中的时
间。

下面通过一个例子，综合展示以上的各项信息抽取子任务。如通过
下面的新闻报道：

信息抽取结果如表2-4所示。



2.情感分析

情感（Sentiment）是人类重要的心理认知能力，使用计算机自动
感知和处理人类情感已经成为人工智能领域重要的研究内容之一。自然
语言处理中的情感分析主要研究人类通过文字表达的情感，因此也称为
文本情感分析。但是，情感又是一个相对比较笼统的概念，既包括个体
对外界事物的态度、观点或倾向性，如正面、负面等；又可以指人自身
的情绪（Emotion），如喜、怒、哀和惧等。随着互联网的迅速发展，
产生了各种各样的用户生成内容（User Generated Content，UGC），
其中很多内容包含着人们的喜怒哀惧等情感，对这些情感的准确分析有
助于了解人们对某款产品的喜好，随时掌握舆情的发展。因此，情感分
析成为目前自然语言处理技术的主要应用之一。

表2-4 信息抽取结果

情感分析可以从任务角度分为两个主要的子任务，即情感分类（识
别文本中蕴含的情感类型或者情感强度，其中，文本既可以是句子，也
可以是篇章）和情感信息抽取（抽取文本中的情感元素，如评价词语、
评价对象和评价搭配等）。针对下面的用户评论：

情感分析结果如表2-5所示。

表2-5 情感分析结果



由于情感分析具有众多的应用场景，如商品评论的分析、舆情分析
等，因此，情感分析受到工业界的广泛关注，已成为自然语言处理研究
应用落地的重要体现。另外，情感分析还在社会学、经济学和管理学等
领域显示出重要的研究意义和广泛的应用前景，这些需求对情感分析不
断提出更高的要求，推动了情感分析研究的内涵和外延不断扩展和深
入。

3.问答系统

问答系统（Question Answering，QA）是指系统接受用户以自然语
言形式描述的问题，并从异构数据中通过检索、匹配和推理等技术获得
答案的自然语言处理系统。根据数据来源的不同，问答系统可以分为4
种主要的类型：1）检索式问答系统，答案来源于固定的文本语料库或
互联网，系统通过查找相关文档并抽取答案完成问答；2）知识库问答
系统，回答问题所需的知识以数据库等结构化形式存储，问答系统首先
将问题解析为结构化的查询语句，通过查询相关知识点，并结合知识推
理获取答案；3）常问问题集问答系统，通过对历史积累的常问问题集
进行检索，回答用户提出的类似问题；4）阅读理解式问答系统，通过
抽取给定文档中的文本片段或生成一段答案来回答用户提出的问题。在
实际应用中，可以综合利用以上多种类型的问答系统来更好地回答用户
提出的问题。

4.机器翻译

机器翻译（Machine Translation，MT）是指利用计算机实现从一
种自然语言（源语言）到另外一种自然语言（目标语言）的自动翻译。
据统计，目前世界上存在约7，000种语言，其中，超过300种语言拥有
100万个以上的使用者。而随着全球化趋势的发展和互联网的广泛普
及，不同语言使用者之间的信息交流变得越来越重要。如何突破不同国
家和不同民族之间的语言障碍，已成为全人类面临的共同难题。机器翻
译为克服这一难题提供了有效的技术手段，其目标是建立自动翻译方
法、模型和系统，打破语言壁垒，最终实现任意时间、任意地点和任意



语言之间的自动翻译，完成人们无障碍自由交流的梦想。自从自然语言
处理领域诞生以来，机器翻译一直是其主要的研究任务和应用场景。近
年来，谷歌、百度等公司纷纷推出在线的机器翻译服务，科大讯飞等公
司也推出了翻译机产品，能够直接将一种语言的语音翻译为另一种语言
的语音，为具有不同语言的人们之间的互相交流提供了便利。

下面给出一个中英互译的例子，其中源语言（中文）和目标语言
（英文）都经过了分词处理：

机器翻译方法一般以句子为基本输入单位，研究从源语言句子到目
标语言句子的映射函数。机器翻译自诞生以来，主要围绕理性主义和经
验主义两种方法进行研究。所谓“理性主义”，是指基于规则的方法；
而“经验主义”是指数据驱动的统计方法，在机器翻译领域表现为基于
语料库（翻译实例库）的研究方法。近年来兴起的基于深度学习的机器
翻译方法利用深度神经网络学习源语言句子到目标语言句子的隐式翻译
规则，即所有的翻译规则都被编码在神经网络的模型参数中。该方法又
被称为神经机器翻译（Neural Machine Translation，NMT）。

5.对话系统

对话系统（Dialogue System）是指以自然语言为载体，用户与计
算机通过多轮交互的方式实现特定目标的智能系统。其中，特定目标包
括：完成特定任务、获取信息或推荐、获得情感抚慰和社交陪伴等。20
世纪50年代，图灵提出用于评测计算机系统智能化水平的“图灵测
试”，就是以自然语言对话的形式进行的。对话系统可以直接应用于语
音助手、智能音箱和车载语音系统等众多场景。

对话系统主要分为任务型对话系统（Task-Oriented Dialogue）和
开放域对话系统（Open-Domain Dialogue）。前者是任务导向型的对话
系统，主要用于垂直领域的自动业务助理等，具有明确的任务目标，如
完成机票预订、天气查询等特定的任务。后者是以社交为目标的对话系
统，通常以闲聊、情感陪护等为目标，因此也被称为聊天系统或聊天机
器人（Chatbot），在领域和话题上具有很强的开放性。

下面是一段开放域对话系统人机对话的示例，其中U代表用户的话



语（Utter-ance），S代表对话系统的回复。该类对话系统的主要目标
是提升对话的轮次以及用户的满意度。相比对话的准确性，开放域对话
系统更关注对话的多样性以及对用户的吸引程度。

任务型对话系统一般由顺序执行的三个模块构成，即自然语言理
解、对话管理和自然语言生成。其中，自然语言理解（Natural
Language Understanding，NLU）模块的主要功能是分析用户话语的语
义，通常的表示形式为该话语的领域、意图以及相应的槽值等。如对于
用户话语：

自然语言理解的结果如表2-6所示。

表2-6 自然语言理解的结果

对话管理（Dialogue Management，DM）模块包括对话状态跟踪
（Dialogue State Tracking，DST）和对话策略优化（Dialogue
Policy Optimization，DPO）两个子模块。对话状态一般表示为语义槽
和值的列表。例如，通过对以上用户话语自然语言理解的结果进行对话
状态跟踪，得到当前的对话状态（通常为语义槽及其对应的值构成的列
表）：[到达地=北京；出发时间=明天；出发地=NULL；数量=1]。获得
当前对话状态后，进行策略优化，即选择下一步采用什么样的策略，也
叫作动作。动作有很多种，如此时可以询问出发地，也可以询问舱位类
型等。

在任务型对话系统里，自然语言生成（Natural Language
Generation，NLG）模块工作相对比较简单，通常通过写模板即可实
现。比如要询问出发地，就直接问“请问您从哪里出发？”，然后经过



语音合成（Text-to-Speech，TTS）反馈给用户。

以上三个模块可以一直循环执行下去，随着每次用户的话语不同，
对话状态也随之变化。然后，采用不同的回复策略，直到满足用户的订
票需求为止。

2.3 基本问题

上面介绍了两大类常见的自然语言处理任务，虽然这些任务从表面
上看各不相同，但是都可以归为文本分类问题、结构预测问题或序列到
序列问题，下面就这三个基本问题分别加以介绍。

2.3.1 文本分类问题

文本分类（Text Classification或Text Categorization）是最简
单也是最基础的自然语言处理问题。即针对一段文本输入，输出该文本
所属的类别，其中，类别是事先定义好的一个封闭的集合。文本分类具
有众多的应用场景，如垃圾邮件过滤（将邮件分为垃圾和非垃圾两
类）、新闻分类（将新闻分为政治、经济和体育等类别）等。2.2.3节
介绍的文本情感分类任务就是典型的文本分类问题，类别既可以是褒、
贬两类，也可以是喜、怒、哀和惧等多类。

在使用机器学习，尤其是深度学习方法解决文本分类问题时，首
先，需要使用2.1节介绍的文本表示技术，将输入的文本转化为特征向
量；然后，使用第4章将要介绍的机器学习模型（也叫分类器），将输
入的特征向量映射为一个具体的类别。

除了直接使用文本分类技术解决实际问题，还有很多自然语言处理
问题可以转换为文本分类问题，如文本匹配（Text Matching），即判
断两段输入文本之间的匹配关系，包括复述关系（Paraphrasing：判断
两个表述不同的文本语义是否相同）、蕴含关系（Entailment：根据一
个前提文本，推断与假设文本之间的蕴含或矛盾关系）等。一种转换的
方法是将两段文本直接拼接起来，然后按复述或非复述、蕴含或矛盾等
关系分类。



2.3.2 结构预测问题

与文本分类问题不同，在结构预测问题中，输出类别之间具有较强
的相互关联性。例如，在词性标注任务中，一句话中不同词的词性之间
往往相互影响，如副词之后往往出现动词或形容词，形容词之后往往跟
着名词等。结构预测任务通常是自然语言处理独有的。下面介绍三种典
型的结构预测问题——序列标注、序列分割和图结构生成。

1.序列标注

所谓序列标注（Sequence Labeling），指的是为输入文本序列中
的每个词标注相应的标签，如词性标注是为每个词标注一个词性标签，
包括名词、动词和形容词等。其中，输入词和输出标签数目相同且一一
对应。表2-7展示了一个序列标注（词性标注）示例。序列标注问题可
以简单地看成多个独立的文本分类问题，即针对每个词提取特征，然后
进行标签分类，并不考虑输出标签之间的关系。条件随机场
（Conditional Random Field，CRF）模型是一种被广泛应用的序列标
注模型，其不但考虑了每个词属于某一标签的概率（发射概率），还考
虑了标签之间的相互关系（转移概率）。4.3节将要介绍的循环神经网
络模型也隐含地建模了标签之间的相互关系，为了进一步提高准确率，
也可以在循环神经网络之上再使用条件随机场模型。

表2-7 序列标注（词性标注）示例

2.序列分割

除了序列标注问题，还有很多自然语言处理问题可以被建模为序列
分割问题，如分词问题，就是将字符序列切分成若干连续的子序列；命
名实体识别问题，也是在文本序列中切分出子序列，并为每个子序列赋
予一个实体的类别，如人名、地名和机构名等。可以使用专门的序列分
割模型对这些问题进行建模，不过为了简化，往往将它们转换为序列标
注任务统一加以解决。如命名实体识别，序列标注的输出标签可以为一
个实体的开始（B-XXX）、中间（I-XXX）或者非实体（O）等，其中B代
表开始（Begin）、I代表中间（Inside），O代表其他（Other），XXX
代表实体的类型，如人名（PER）、地名（LOC）和机构名（ORG）等。



分词问题也可以转换为序列标注问题，即为每个字符标注一个标签，指
明该字符是一个词的开始（B）或者中间（I）等。表2-8展示了使用序
列标注方法解决序列分割（分词和命名实体识别）问题示例。其中，对
于输入：“我爱北京天安门。”分词输出结果是：“我爱北京天安
门。”命名实体识别输出结果是：“北京天安门=LOC”。

3.图结构生成

图结构生成也是自然语言处理特有的一类结构预测问题，顾名思
义，其输入是自然语言，输出结果是一个以图表示的结构。图中的节点
既可以来自原始输入，也可以是新生成的；边连接了两个节点，并可以
赋予相应的类型。2.2.2节介绍的句法分析就是典型的图结构生成问
题，其中，在依存分析中，节点皆为原始输入的词，而边则连接了有句
法关系的两个词，然后在其上标注句法关系类别。此外，还可以对输出
的图结构进行一定的约束，如需要为树结构（一种特殊的图结构，要求
每个节点有且只有一个父节点）等。在短语结构句法分析中，除了原始
输入词作为终结节点，还需要新生成词性以及短语类型节点作为非终结
节点，然后，使用边将这些节点相连，并最终形成树结构。不过，树结
构也不是必要的限制，如在2.2.2节介绍的语义依存图分析中，结果就
不必是一棵树，而可以是更灵活的图结构。

表2-8 使用序列标注方法解决序列分割（分词和命名实体识别）问题示例

图结构生成算法主要包括两大类：基于图的算法和基于转移的算
法。

基于图（Graph-based）的算法首先为图中任意两个节点（输入的
词）构成的边赋予一定的分数，算法的目标是求解出一个满足约束的分
数最大的子图，其中，子图的分数可以简单看作所有边的分数和，如果
要求输出结果满足树结构的约束，则需要使用最大生成树（Maximum
Spanning Tree，MST）算法进行解码。除了解码算法，基于图的算法还
需要解决如何为边打分以及参数如何优化等问题，本书不进行详细的阐
述，感兴趣的读者可以查阅相关参考资料。

基于转移（Transition-based）的算法将图结构的构建过程转化为



一个状态转移序列，通过转移动作，从一个旧的状态转移到新的状态，
也就是说转移动作是状态向前前进一步的方式，体现了状态变化的策
略，转移动作的选择本质上就是一个分类问题，其分类器的特征从当前
的状态中加以提取。

首先，来看如何使用基于转移的算法解决依存句法分析问题。在
此，以一种非常简单的标准弧（Arc-standard）转移算法为例，转移状
态由一个栈（Stack）和一个队列（Queue）构成，栈中存储的是依存结
构子树序列 Sm··· S1S0，队列中存储的是未处理的词Q0Q1···

Qn。在初始转移状态中，栈为空，句子当中的所有词有序地填入队列

中；在结束转移状态中，栈中存储着一棵完整的依存结构句法分析树，
队列为空。

另外，算法定义了以下三种转移动作，分别为移进（Shift，
SH）、左弧归约（Reduce-Left，RL）和右弧归约（Reduce-Right，
RR），具体含义如下：

• SH，将队列中的第一个元素移入栈顶，形成一个仅包含一个节点
的依存子树；

• RL，将栈顶的两棵依存子树采用一个左弧S1↶S0进行合并，然

后S1下栈；

• RR，将栈顶的两棵依存子树采用一个右弧S1↷S0进行合并，然

后S0下栈。

图2-4展示了面向依存句法分析的标准弧转移算法中的三种动作。
除了以上三个动作，还定义了一个特殊的完成动作（Finish，FIN）。
根据上述的定义，可以使用表2-9中的动作序列逐步生成图2-2（b）所
示的依存结构句法树。弧上的句法关系可以在生成弧的时候（采用RL或
RR动作），使用额外的句法关系分类器加以预测。

图2-4 面向依存句法分析的标准弧转移算法中的三种动作



基于转移算法的短语结构句法分析方法过程也类似，只不过栈中存
储的是短语结构句法子树序列，队列中同样存储的是未被处理的词。在
此不再赘述。

2.3.3 序列到序列问题

除了文本分类和结构预测问题，还有很多自然语言处理问题可以归
为序列到序列（Sequence-to-Sequence，Seq2seq）问题。机器翻译问
题就是典型的代表，其中，输入为源语言句子，输出为目标语言句子。
将其推广到序列到序列问题，输入就是一个由若干词组成的序列，输出
则是一个新的序列，其中，输入和输出的序列不要求等长，同时也不要
求词表一致。

使用传统的机器学习技术解决序列到序列问题是比较困难的，而基
于深度学习模型，可以直接将输入序列表示为一个向量，然后，通过该
向量生成输出序列。其中，对输入序列进行表示的过程又叫作编码，相
应的模型则被称为编码器（En-coder）；生成输出序列的过程又叫作解
码，相应的模型则被称为解码器（Decoder）。因此，序列到序列模型
也被称为编码器--解码器（Encoder-Decoder）模型。图2-5以机器翻译
问题为例，展示了一个编码器--解码器模型的示例。本书将在第4章详
细介绍序列到序列模型的具体实现。

除了机器翻译，还有很多自然语言处理问题可以被建模为序列到序
列问题，如对话系统中，用户话语可被视为输入序列，机器的回复则可
被视为输出序列，甚至文本分类问题也可以被建模为序列到序列问题。
首先，使用编码器对输入文本进行表示，然后，解码器只输出一
个“词”，即文本所属的类别。结构预测问题也类似，首先，也需要使
用编码器对输入文本进行表示，然后，在处理序列标注问题时，使用解
码器生成输出标签序列（需要保证输出序列与输入序列长度相同）；在
处理序列分割问题时，直接输出结果序列；在处理图结构生成问题时，
需要将图表示的结果进行序列化，即通过一定的遍历顺序，将图中的节
点和边转换为一个序列，然后再执行解码操作。不过，由于输入和输出
有较强的对应关系，而序列到序列模型很难保证这种对应关系，所以结
构预测问题较少直接使用序列到序列模型加以解决。但是无论如何，由
于序列到序列模型具备强大的建模能力，其已成为自然语言处理的大一
统框架，越来越多的问题都可以尝试使用该模型加以解决。也就是说，
可以将复杂的自然语言处理问题转化为编码、解码两个子问题，然后就



可以分别使用独立的模型建模了。

表2-9 基于标准弧转移算法的依存句法树生成动作序列示例

图2-5 编码器--解码器模型示例

2.4 评价指标

由于自然语言处理任务的多样性以及评价的主观性，因此很难使用
单一的评价指标衡量所有任务的性能，所以针对不同类型的任务，往往
采用不同的评价方法。对评价方法的准确把握，有助于深入理解各项自



然语言处理任务。

准确率（Accuracy）是最简单、直观的评价指标，经常被应用于文
本分类等问题。其计算公式为：

词性标注等序列标注问题也可以采用准确率进行评价，即：

但是，并非全部的序列标注问题都可以采用准确率进行评价，如在
将分词、命名实体识别等序列分割问题转化为序列标注问题后，就不应
该使用准确率进行评价。以命名实体识别为例，如果采用按词计算的准
确率，则很多非命名实体（相应词对应的类别为O）也被计入准确率的
计算之中。另外，如果错标了部分词，那么命名实体识别结果就是错误
的，但是按照词准确率计算的话，仍然有部分词被认为分类正确了。如
表2-10中的例子所示，按照词（此处为汉字）计算，在8个输入词中，
仅仅预测错了1个（三），则准确率为7/8=0.875，这显然是不合理的。
分词等其他序列分割问题的评价也存在类似的问题。

表2-10 命名实体识别评价示例

那么，如何更合理地评价序列分割问题的性能呢？这就需要引入F
值（F-Mea-sure或F-Score）评价指标，其是精确率（Precision）和召
回率（Recall）的加权调和平均，具体公式为：

式中，β是加权调和参数；P 是精确率；R是召回率。当β=1时，
即精确率和召回率的权重相同，此时F值又称为F1值，具体公式为：



在命名实体识别问题中，精确率和召回率的定义分别为：

仍以表2-10中的示例为例，其中，“正确识别的命名实体数目”为
1（“哈尔滨”），“识别出的命名实体总数”为2（“张”和“哈尔
滨”），“测试文本中命名实体的总数”为2（“张三”和“哈尔
滨”），那么此时精确率和召回率皆为1/2=0.5，最终的F1=0.5。与基

于词计算的准确率（0.875）相比，该值更为合理了。

理解了准确率和F值两种评价指标的区别和联系后，就可以很容易
地为一个自然语言处理任务选择合适的评价指标。例如，在评价依存句
法分析时（分析结果是一棵句法依存树），由于正确的标注结果为每个
词都赋予了一个正确的父节点，因此可以使用以词为单位的准确率对依
存句法分析结果进行评价，以表明有多大比例的词正确地找到了父节
点。不过，评价指标通常不被直接称作准确率，而使用UAS（Unlabeled
Attachment Score）指标，即词的父节点被正确识别的准确率。另外，
在考虑一个词与父节点的关系时，则使用LAS（Labeled Attachment
Score）指标进行评价，即词的父节点以及与父节点的句法关系都被正
确识别的准确率。而在对语义依存图任务进行评价时，由于每个词的父
节点的个数不确定，则无法使用准确率进行评价，此时就需要使用F值
了，即以图中的弧为单位，计算其识别的精确率和召回率，然后计算F
值。与依存句法分析一样，F值也分为考虑语义关系和不考虑语义关系
两种情况。类似地，短语结构句法分析也无法使用准确率进行评价，可
以使用句法结构中包含短语（包括短语类型及短语所覆盖的范围）的F
值进行评价。

虽然准确率和F值可以用来对标准答案比较明确的任务进行评价，
但是很多自然语言处理问题的答案并不明确，或者说并不唯一。如
2.2.1节介绍的语言模型问题，在给定历史文本预测下一个词时，除了
在语料库中出现的词，还有许多其他词也是合理的。因此，不能简单地
使用准确率进行评价，所以才引入了困惑度这一评价指标。

对机器翻译系统的评价也类似，测试数据中的参考译文并非唯一正
确的答案，目标语言翻译结果只要与源语言语义相同，其表达方式可以



非常的灵活。BLEU值是最常用的机器翻译自动评价指标，其计算方法是
统计机器译文与参考译文（可以不止一个）中 N-gram 匹配的数目占机
器译文中所有 N-gram 总数的比率，即N-gram的精确率。其中N 的取值
不易过大，也不易过小。过大的N 会导致机器译文与参考译文中共现的
N-gram过少，而过小的N 会无法衡量机器译文中词语的顺序信息，所以
一般N 最大取4。另外，由于此评价方法仅考虑了精确率，而忽视了召
回率，所以其倾向于较短的翻译。因此，BLEU值引入了一个长度惩罚因
子，鼓励机器译文中单词数目尽量接近参考译文中的数目。最终，BLEU
值的区间是0～1，得分越高表明机器翻译系统的译文质量越好。

对人机对话系统的评价，虽然也可以利用历史上人人对话数据，采
用BLEU值等指标，但是由于回复的开放性，这种自动评价的结果很难保
证公正、客观。因为与机器翻译类似，人机对话系统的机器回复也没有
唯一的标准答案，但比机器翻译评价更困难的是，人机对话系统的回复
甚至都没有需要与输入语义相同这一约束，也就是说人机对话系统的答
案是开放式的。此外，由于对话的交互性，不能简单地通过一轮人机对
话就对系统进行评价。以上这些问题都给人机对话系统的自动评价带来
了极大的挑战。因此，在评价一个人机对话系统时，往往采用人工评价
的方式，即通过人与系统进行多轮对话后，最终给出一个总的或多个维
度（流畅度、相关度和准确性等）的主观分数。由于评分的主观性，人
工评价的一致性往往又比较低，也就是说不同人打分可能差异比较大，
为了消除这种差异性，又需要多人进行评价并最终取一个平均分数。因
此，人工评价的代价往往非常高，很难在系统开发的过程中多次进行。
综上，人机对话系统的评价方法仍是目前自然语言处理领域一个非常棘
手的开放性问题，并没有很好地被解决。

2.5 小结

本章首先介绍了词的向量表示方法，从传统的独热向量表示、分布
式向量表示到最新的词向量和词袋表示。然后，介绍了传统的N元语言
模型，分词、词性标注等自然语言处理基础任务，其中以BPE为代表的
子词切分经常被用于现代的预训练语言模型中。接着，简单介绍了信息
抽取、情感分析等自然语言处理应用任务。以上任务看似纷繁复杂，但
是基本可以归纳为三类问题，即：文本分类、结构预测和序列到序列问
题，并可以使用相应的模型加以解决。最后，介绍了如何评价一个自然
语言处理任务。



习题

2.1 基于规则与基于机器学习的自然语言处理方法分别有哪些优缺
点？

2.2 如何在词的独热表示中引入词性、词义等特征？请举例说明。

2.3 奇异值分解方法是如何反映词之间的高阶关系的？

2.4 在使用式（2-18）计算困惑度时，如果其中的某一项概率为
0，如何处理？

2.5 若使用逆向最大匹配算法对句子“研究生命的起源”进行分
词，结果是什么？是否可以说明逆向最大匹配算法要优于正向最大匹配
算法？

2.6 2.2.2节介绍的子词切分算法是否可以用于中文？若能应用，
则与中文分词相比有哪些优缺点？

2.7 是否可以使用序列标注方法解决句法分析（短语结构和依存两
种）问题？若能使用，则如何进行？

2.8 使用何种评价方法评价一个中文分词系统？并请编程实现该评
价方法。

[1] 原文：You shall know a word by the company it keeps.

[2] 也有论文中使用＜s＞等标记表示句首，使用＜/s＞、＜e＞等标记
表示句尾。

[3] 当模型较为复杂（例如使用了平滑技术）时，在测试集上反复评价
并调整超参数的方式会使得模型在一定程度上拟合了测试集。因此在标
准实验设置中，需要划分一个额外的集合，以用于训练过程中的必要调
试。该集合通常称为开发集（Development set），也称验证集
（Validation set）。

[4] 不同标注规范定义的词性及表示方式不同，本书主要以中文宾州树
库（Chinese Penn Treebank）词性标注规范为例。



  第3章 

基础工具集与常用数据集

本章首先介绍两种常用的自然语言处理基础工具集，即英文处理工
具集NLTK和中文工具集LTP。其次，介绍本书所使用的深度学习框架
（Py-Torch）。最后，介绍常用的大规模预训练数据集以及更多自然语
言处理数据集的获取方法。通过本章的学习，读者将对基础自然语言处
理技术、深度学习工具以及大规模数据集有一个更直观的感受，并为后
续章节的学习做好准备。

3.1 NLTK工具集

NLTK（Natural Language Toolkit）是一个 Python 模块，提供了

多种语料库（Corpora）和词典（Lexicon）资源，如WordNet[1]等，以
及一系列基本的自然语言处理工具集，包括：分句、标记解析
（Tokenization）、词干提取（Stemming）、词性标注（POS
Tagging）和句法分析（Syntactic Parsing）等，是对英文文本数据进
行处理的常用工具。

为了使用NLTK，需要对其进行安装，可以直接使用pip包管理工具
安装，具体方法为，首先进入操作系统的控制台，然后执行以下命令。

接下来简要介绍NLTK提供的常用语料库、词典资源及自然语言处理
工具。

3.1.1 常用语料库和词典资源



为了使用NLTK提供的语料库和词典资源，首先需要进行下载。具体
方法为，进入Python的控制台（在操作系统控制台下，执行python命
令），然后执行以下两行命令。

此时会弹出一个对话框，允许用户选择所需下载的数据资源，可以
简单地选择“All”，然后单击“Download”。同时，还可以选择数据
存储的目录。

1.停用词

在进行自然语言处理时，有一些词对于表达语言的含义并不重要，
如英文中的冠词“a”“the”，介词“of”“to”等。因此，在对语言
进行更深入的处理之前，可以将它们删除，从而加快处理的速度，减小
模型的规模。这些词又被称为停用词（Stop words）。NLTK提供了多种
语言的停用词词表，可以通过下面语句引入停用词词表。

然后，使用下面的语句查看一种语言的停用词词表（如英文）。



2.常用语料库

NLTK提供了多种语料库（文本数据集），如图书、电影评论和聊天
记录等，它们可以被分为两类，即未标注语料库（又称生语料库或生文
本，Raw text）和人工标注语料库（Annotated corpus）。下面就其中
的典型语料库加以简要介绍，关于全部语料库的详细信息，可以通过
NLTK的网站了解。

（1）未标注语料库。可以使用两种方式访问之前下载的语料库，
第一种是直接访问语料库的原始文本文件（目录为下载数据时选择的存
储目录）；另一种是调用NLTK提供的相应功能。例如，通过以下方式，

可以获得古腾堡（Gutenberg）语料库[1]（目录为：
nltk_data/corpora/gutenberg）中简·奥斯汀（Jane Austen）所著的
小说Emma原文。

（2）人工标注语料库。人工标注的关于某项任务的结果。如在句
子极性语料库（sentence_polarity）中，包含了10，662条来自电影领
域的用户评论句子以及相应的极性信息（褒义或贬义）。通过以下命
令，可以获得该语料库，其中，褒贬各5，331句（经过了小写转换、简
单的标记解析等预处理后）。



sentence_polarity提供了基本的数据访问方法，如
sentence_polarity.categories（） 返回褒贬类别列表，即
['neg'，'pos']；sentence_polarity.words（）返回语料库中全部单
词的列表，如果调用时提供类别参数（categories=＂pos＂ 或 ＂neg
＂），则会返回相应类别的全部单词列表；
sentence_polarity.sents（）返回语料库中全部句子的列表，调用时
同样可以提供类别参数。可以使用以上方法的组合，构造出一个大列
表，其中每个元素为一个句子的单词列表及其对应的褒贬类别构成的元
组。

3.常用词典

（1） WordNet。WordNet 是普林斯顿大学构建的英文语义词典
（也称作辞典，Thesaurus），其主要特色是定义了同义词集合
（Synset），每个同义词集合由具有相同意义的词义组成。此外，
WordNet为每一个同义词集合提供了简短的释义（Gloss），同时，不同
同义词集合之间还具有一定的语义关系。下面演示WordNet的简单使用
示例。



NLTK提供的更多关于WordNet的功能请参考相应的官方文档。

（2） SentiWordNet。SentiWordNet（Sentiment WordNet）是基
于WordNet标注的词语（更准确地说是同义词集合）情感倾向性词典，
它为WordNet中每个同义词集合人工标注了三个情感值，依次是褒义、
贬义和中性。通过该词典，可以实现一个简单的情感分析系统。仍然通
过一个例子演示SentiWordNet的使用方法。

3.1.2 常用自然语言处理工具集

NLTK提供了多种常用的自然语言处理基础工具，如分句、标记解析
和词性标注等，下面简要介绍这些工具的使用方法。

1.分句

通常一个句子能够表达完整的语义信息，因此在进行更深入的自然
语言处理之前，往往需要将较长的文档切分成若干句子，这一过程被称
为分句。一般来讲，一个句子结尾具有明显的标志，如句号、问号和感



叹号等，因此可以使用简单的规则进行分句。然而，往往存在大量的例
外情况，如在英文中，句号除了可以作为句尾标志，还可以作为单词的
一部分（如“Mr.”）。NLTK提供的分句功能可以较好地解决此问题。
下面演示如何使用该功能。

2.标记解析

一个句子是由若干标记（Token）按顺序构成的，其中标记既可以
是一个词，也可以是标点符号等，这些标记是自然语言处理最基本的输
入单元。将句子分割为标记的过程叫作标记解析（Tokenization）。英
文中的单词之间通常使用空格进行分割，不过标点符号通常和前面的单
词连在一起，因此标记解析的一项主要工作是将标点符号和前面的单词
进行拆分。和分句一样，也无法使用简单的规则进行标记解析，仍以符
号“.”为例，它既可作为句号，也可以作为标记的一部分，如不能简
单地将“Mr.”分成两个标记。同样，NLTK提供了标记解析功能，也称
作标记解析器（Tokenizer）。下面演示如何使用该功能。

3.词性标注

词性是词语所承担的语法功能类别，如名词、动词和形容词等，因
此词性也被称为词类。很多词语往往具有多种词性，如“fire”，即可
以作名词（“火”），也可以作动词（“开火”）。词性标注就是根据
词语所处的上下文，确定其具体的词性。如在“They sat by the
fire.”中，“fire”是名词，而在“They fire a
gun.”中，“fire”就是动词。NLTK提供了词性标注器（POS
Tagger），下面演示其使用方法。



其中，“fire”在第一个句子中被标注为名词（NN），在第二个句
子中被标注为动词（VBP）。这里，词性标记采用宾州树库（Penn
Treebank）的标注标准，NLTK提供了关于词性标记含义的查询功能，如
下所示。

4.其他工具

除了以上介绍的分句、标记解析和词性标注，NLTK还提供了其他丰
富的自然语言处理工具，包括命名实体识别、组块分析（Chunking）和
句法分析等。

另外，除了NLTK，还有很多其他优秀的自然语言处理基础工具集可
供使用，如斯坦福大学使用Java开发的CoreNLP、基于Python/Cython开
发的spaCy等，它们的使用方法本书不再进行详细的介绍，感兴趣的读
者可以自行查阅相关的参考资料。

3.2 LTP工具集

以上介绍的工具集主要用于英文的处理，而以中文为代表的汉藏语
系与以英语为代表的印欧语系不同，一个显著的区别在于词语之间不存
在明显的分隔符，句子一般是由一串连续的字符构成的，因此在处理中
文时，需要使用更有针对性的分析工具。

语言技术平台（Language Technology Platform，LTP）[2]是哈尔
滨工业大学社会计算与信息检索研究中心（HIT-SCIR）历时多年研发的



一整套高效、高精度的中文自然语言处理开源基础技术平台。该平台集
词法分析（分词、词性标注和命名实体识别）、句法分析（依存句法分
析）和语义分析（语义角色标注和语义依存分析）等多项自然语言处理
技术于一体。最新发布的LTP 4.0版本使用Python语言编写，采用预训
练模型以及多任务学习机制，能够以较小的模型获得非常高的分析精
度。

LTP的安装也非常简单，可以直接使用pip包管理工具，具体方法
为，首先进入操作系统的控制台，然后执行以下命令。

下面对LTP的使用方法进行简要的介绍。

3.2.1 中文分词

如上所述，由于中文词语之间没有空格进行分割，而自然语言处理
中通常以词为最小的处理单位，因此需要对中文进行分词处理。中文的
分词与英文的标记解析功能类似，只是中文分词更强调识别句子中的词
语信息，因此往往不被称为标记解析。另外，与标记解析相比，由于一
个句子往往有多种可能的分词结果，因此分词任务的难度更高，精度也
更低。使用 LTP 进行分词非常容易，具体示例如下。

3.2.2 其他中文自然语言处理功能

除了分词功能，LTP还提供了分句、词性标注、命名实体识别、依
存句法分析和语义角色标注等功能。与NLTK类似，在此只演示如何使用
LTP进行分句和词性标注，关于更多其他功能的使用方法，请参见LTP的
官方文档。



3.3 PyTorch基础

现代深度学习系统的模型结构变得越来越复杂，若要从头开始搭建
则极其耗时耗力，而且非常容易出错。幸好，看似纷繁复杂的深度学习
模型，都可以分解为一些同构的简单网络结构，通过将这些简单网络结
构连接在一起，就可构成复杂的模型。因此，很多深度学习库应运而
生，它们可以帮助用户快速搭建一个深度学习模型，并完成模型的训练
（也称学习或优化）、预测和部署等功能。

本书使用的是PyTorch开源深度学习库，它由Facebook人工智能研
究院（Face-book’s AI Research，FAIR）于2017年推出，可以使用
Python语言调用。严格来讲，PyTorch是一个基于张量（Tensor）的数
学运算工具包，提供了两个高级功能：1）具有强大的GPU（图形处理单
元，也叫显卡）加速的张量计算功能；2）能够自动进行微分计算，从
而可以使用基于梯度的方法对模型参数进行优化。基于这些特点，它特
别适合作为一个灵活、高效的深度学习平台。与其他深度学习库相比，
PyTorch具有如下优点：

• 框架简洁；

• 入门简单，容易上手；

• 支持动态神经网络构建；

• 与Python语言无缝结合；

• 调试方便。



因此，PyTorch获得了越来越多的用户，尤其是研究人员的青睐。
本节将简要介绍PyTorch的基本功能，主要包括基本的数据存储结构
——张量，张量的基本操作以及通过反向传播技术自动计算梯度。

首先，仍然可以使用pip包管理工具安装PyTorch，具体方法为，首
先进入操作系统的控制台，然后执行以下命令。

本书更推荐使用Conda虚拟环境安装和运行PyTorch，具体安装方法
可以参见PyTorch官网。

3.3.1 张量的基本概念

所谓张量（Tensor），就是多维数组。当维度小于或等于2时，张
量又有一些更熟悉的名字，例如，2维张量又被称为矩阵（Matrix），1
维张量又被称为向量（Vector），而0维张量又被称为标量
（Scalar），其实就是一个数值。使用张量，可以方便地存储各种各样
的数据，如2维表格数据可以使用2维张量，即矩阵存储，而多张表格就
可以使用3维张量表示和存储。一幅灰度图像（每个像素使用一个整数
灰度值表示）也可以使用矩阵存储，而通常一副彩色图像（每个像素使
用三个整数表示，分别代表红、绿、蓝的值）就可以使用3维张量表示
和存储。

PyTorch提供了多种方式创建张量，如下所示。



以上张量都存储在内存中，并使用CPU进行运算。若要在GPU中创建
和计算张量，则需要显式地将其存入GPU中，具体可以采用下列方法之
一（前提是本机已经配置了NVIDIA的GPU并且正确地安装了相应的CUDA
库）。

3.3.2 张量的基本运算

创建了张量后，即可以对其进行运算或操作，如加减乘除四则混合
运算等。PyTorch中的加减乘除是按元素进行运算的，即将参与运算的
两个张量按对应的元素进行加减乘除，如下所示。



更多的运算方式可以通过torch中的函数实现，如向量点积
（torch.dot）、矩阵相乘（torch.mm）、三角函数和各种数学函数
等。具体示例如下。

除了以上常用的数学运算，PyTorch还提供了更多的张量操作功
能，如聚合操作（Aggregation）、拼接（Concatenation）操作、比较
操作、随机采样和序列化等，详细的功能列表和使用方法可以参考
PyTorch官方文档。

其中，当对张量进行聚合（如求平均、求和、最大值和最小值等）
或拼接操作时，还涉及一个非常重要的概念，即维（Dim）或轴
（Axis）。如对于一个张量，可以直接使用mean函数求其平均值。

可见，直接调用mean函数获得的是全部6个数字的平均值。然而，
有时需要对某一行或某一列求平均值，此时就需要使用维的概念。对于
一个n维张量，其维分别是dim=0，dim=1，···，dim=n−1。在做张量
的运算操作时，dim设定了哪个维，就会遍历这个维去做运算（也叫作
沿着该维运算），其他维顺序不变。仍然是调用mean函数，当设定的维
不同时，其结果也是不同的。



以上演示了张量仅为2维（矩阵）的情况，当维度大于2时，其运算
形式是什么样的呢？可以使用一个简单的规则描述，即“当dim=n时，
则结果的n+1维发生变化，其余维不变”。如在上面的例子中，当dim=0
时，则张量形状由原来的（2，3）变为（1，3）；当dim=1时，则张量
形状由原来的（2，3）变为（2，1）。不过，细心的读者可能会发现，
以上示例的运算结果形状并非（1，3）或（2，1）的矩阵，而分别是两
个向量。为了使结果保持正确的维度，聚合操作还提供了keepdim参
数，默认设置为False，需要显式地设为True。

拼接（torch.cat）操作也是类似的，通过指定维，获得不同的拼
接结果。如：

可见，拼接操作的运算规则也同样为“当dim=n时，则结果的n+1维
发生变化，其余维不变”，如在上面的例子中，当dim=0时，则由原来
两个形状为（2，3）的张量，拼接成一个（4，3）的张量；当dim=1
时，则由原来两个形状为（2，3）的张量，拼接成一个形状为（2，6）



的张量。

通过对以上多种操作的组合使用，就可以写出复杂的数学计算表达
式。如对于数学表达式

z=(x+y)×(y−2)

当x=2，y=3时，可以手动计算出z=5，当然也可以写一段简单的
Python进行计算。

那么，使用PyTorch如何计算z的值呢？其实PyTorch程序和Python
非常类似，唯一不同之处在于数据使用张量进行保存。具体代码如下所
示。

通过上面的例子可以看到，PyTorch的编程方式与Python非常相
似，因此，当具备了Python编程基础后，学习和使用PyTorch都非常容
易。而PyTorch带来的一个好处是更高效的执行速度，尤其是当张量存
储的数据比较多，同时机器还装有GPU时，效率的提升是极其显著的。
下面以一个具体的例子展示使用和不使用GPU（NVIDIA Tesla K80）
时，对三个较大的矩阵进行相乘时，执行速度的对比。



3.3.3 自动微分

除了能显著提高执行速度，PyTorch还提供了自动计算梯度的功能
（也叫自动微分），使得无须人工参与，即可自动计算一个函数关于一
个变量在某一取值下的导数。通过该功能，就可以使用基于梯度的方法
对参数（变量）进行优化（也叫学习或训练）。使用PyTorch计算梯度
非常容易，仅需要执行tensor.backward（）函数，就可以通过反向传
播算法（Back Propogation）自动完成。

需要注意的一点是，为了计算一个函数关于某一变量的导数，
PyTorch要求显式地设置该变量（张量）是可求导的，否则默认不能对
该变量求导。具体设置方法是在张量生成时，设置
requires_grad=True。

因此，计算z=（x+y）×（y−2）的代码经过简单修改，就可以计算

当x=2，y=3时， 和 的值。

也可手工求解，即： ， ，则



当x=2，y=3时， 和 的值分别为1和6，与以上PyTorch代码计算的
结果一致。

3.3.4 调整张量形状

参与运算的张量需要满足一定的形状，比如两个矩阵相乘，前一个
矩阵的第二维应该和后一个矩阵的第一维相同。为了做到这一点，有时
需要对张量的形状进行调整。PyTorch一共提供了4种调整张量形状的函
数，分别为view、reshape、transpose和permute。下面分别加以介
绍。

view函数的参数用于设置新的张量形状，因此需要保证张量总的元
素个数不变。示例如下。

进行view操作的张量要求是连续的（Contiguous），可以调用
is_conuous函数判断一个张量是否为连续的。如果张量非连续，则需要
先调用contiguous函数将其变为连续的，才能调用view函数。好在
PyTorch提供了新的reshape函数，可以直接对非连续张量进行形状调
整。除此之外，reshape函数与view函数功能一致。在此不再赘述。

transpose（转置）函数用于交换张量中的两个维度，参数分别为
相应的维。如下所示。



不过，transpose函数只能同时交换两个维度，若要交换更多的维
度，需要多次调用该函数。更便捷的实现方式是直接调用permute函
数，其需要提供全部的维度信息作为参数，即便有些维度无须交换也需
要提供。示例如下所示。

3.3.5 广播机制

在上面介绍的张量运算中，都是假设两个参与运算的张量形状相
同。在有些情况下，即使两个张量的形状不同，也可以通过广播机制
（Broadcasting Mechanism）执行按元素计算。具体的执行规则是，首
先，对其中一个或同时对两个张量的元素进行复制，使得这两个张量的
形状相同；然后，在扩展之后的张量上再执行按元素运算。通常是沿着
长度为1的维度进行扩展，下面通过一个具体的例子进行说明。



生成两个张量，形状分别为（3，1）和（1，2），显然，它们不能
直接执行按元素运算。因此，在执行按元素运算之前，需要将它们扩展
（广播）为形状（3，2）的张量，具体扩展的方法为将x的第1列复制到
第2列，将y的第1行复制到第2、3行。如下所示，可以直接进行加法运
算，PyTorch会自动执行广播和按元素相加。

3.3.6 索引与切片

与Python的列表类似，PyTorch中也可以对张量进行索引和切片操
作，规则也与Python语言基本一致，即索引值是从0开始的，切片[m：
n]的范围是从m开始，至n的前一个元素结束。与Python语言不同的是，
PyTorch可以对张量的任意一个维度进行索引或切片。下面演示一些简
单的示例。



3.3.7 降维与升维

有时为了适配某些运算，需要对一个张量进行降维或升维。如很多
神经网络模块在调用时，需要同时输入一个批次，即多个样例，如果此
时只输入1个输入样例，则需要将某一个维度提升，以适配该模块的调
用要求。

具体来讲，所谓升维，就是通过调用torch.unsqueeze（input，
dim，out=None）函数，对输入张量的dim位置插入维度1，并返回一个
新的张量。与索引相同，dim的值也可以为负数。

降维恰好相反，使用torch.squeeze（input，dim=None，
out=None）函数，在不指定dim时，张量中形状为1的所有维都将被除
去。如输入形状为（A，1，B，1，C，1，D）的张量，那么输出形状就
为（A，B，C，D）。当给定dim时，那么降维操作只在给定维度上。例
如，输入形状为（A，1，B），squeeze（input，dim=0）函数将会保持
张量不变，只有用squeeze（input，dim=1）函数时，形状才会变成
（A，B）。下面给出调用示例。



3.4 大规模预训练数据

预训练语言模型需要通过海量文本学习语义信息，随着语料规模的
增大，得到的统计信息将更加精准，更利于文本表示的学习。例如，在
小型语料库中，单词“包袱”只出现在“他背着包袱就走了”这句话
中，则模型只能学习到“包袱”作为一种“布包起来的衣物包裹”的含
义。而随着语料库的增大，单词“包袱”可能出现在更多不同的上下文
中，如“你不要有太大的思想包袱”“那位相声演员的包袱很有趣”，
则能够赋予“包袱”更多不同的含义。因此，为了训练效果更好的预训
练模型，高质量、大规模的预训练数据是必不可少的。在本节中，将主
要介绍典型的语料资源——维基百科数据的获取和基本处理方法。

3.4.1 维基百科数据

维基百科（Wikipedia）是一部用不同语言写成的网络百科全书，
由吉米·威尔士与拉里·桑格两人合作创建，于2001年1月13日在互联
网上推出网站服务，并在2001年1月15日正式展开网络百科全书的项
目。维基百科内容由人工编辑，因此作为预训练的原始数据非常适合。
接下来，将介绍维基百科数据的获取以及原始数据的处理方法。

3.4.2 原始数据的获取

维基百科官方会以一定的时间间隔，对整个维基百科的内容进行快
照并压缩，用户可以直接下载相应的压缩包，获取到某一时刻的维基百



科数据。如以中文维基百科数据为例，存在比较重要的几个文件，如表
3-1所示。

表3-1 中文维基百科快照内容

预训练语言模型主要使用的是维基百科的正文内容，因此这里选
择“zhwiki-latest-pages-articles.xml.bz2”，以下载最新快照的词
条正文压缩包。以2020年10月23日的快照为例，该压缩包的大小约为
1.95GB。由于后续进行处理时会直接对压缩包进行处理，这里不再进行
解压缩操作。

3.4.3 语料处理方法

1.纯文本语料抽取

处理维基百科快照的方法相对比较成熟，这里以WikiExtractor为
例进行介绍。WikiExtractor是一款基于Python的工具包，专门用于处
理维基百科的快照。为了方便安装工具包的相关依赖程序，这里推荐使
用pip命令安装WikiExtractor。

接下来，直接通过一行命令即可对维基百科的快照压缩包进行处
理，去除其中的图片、表格、引用和列表等非常规文本信息，最终得到
纯文本的语料。需要注意的是，这一部分的处理需要花费一定处理时
间，视系统配置不同可能耗费几十分钟至数小时不等。

对于WikiExtractor工具包的使用参数，可通过如下命令获取（普
通用户使用默认参数即可）。



处理完毕后，可以获得纯文本语料文件，其目录结构如下所示。

text文件夹由AA到AO子文件夹构成，而每个子文件夹包含了
wiki_00至wiki_99共100个文件。每个文件包含多个维基百科词条，其
内容如下所示。

可见，每个词条均由＜doc＞标签开始并以＜/doc＞结尾。

2.中文繁简体转换

中文维基百科中同时包含了简体中文和繁体中文的数据，如果使用
者只需要获得简体中文数据，需要将纯文本语料中的繁体中文内容转换
为简体中文。这里使用一款较为成熟的中文繁简体转换工具——
OpenCC。OpenCC工具可将简体中文、繁体中文（其中包括中国香港地



区、中国台湾地区使用的繁体）和日本新字体等中文进行互转。OpenCC
工具同样可以通过pip命令安装。

安装完毕后，可以通过如下Python脚本进行中文繁简转换。

其中，转换脚本convert_t2s.py的内容如下所示。

其中，要用到的配置文件t2s.json的内容如下。



经过处理后，原始语料中的繁体中文将全部转换为简体中文。读者
可根据实际情况进行简繁体或繁简体的转换。

3.数据清洗

经过上述处理后，可以得到包含简体中文的纯文本语料。然而，在
从维基百科快照里抽取纯文本数据的过程中可能因文本编码、损坏的
HTML标签等问题导致纯文本中包含一些乱码或机器字符。因此，在最后
需要通过一个简单的后处理操作对纯文本语料进行二次过滤，进一步提
升预训练语料的质量。需要注意的是，这里仅处理语料中的一些明显错
误，而对于一般类型的错误则不会处理（如标点不统一等问题），因为
一般类型的错误在日常的文本中也会出现。这里的处理方式主要包括如
下几类：

• 删除空的成对符号，例如“（）”“《》”“【】”“[]”等；

• 删除＜br＞等残留的HTML标签。需要注意的是，这里不删除
以“＜doc id”和“＜/doc＞”为开始的行，因其表示文档的开始和结
束，能为某些预训练语言模型的数据处理提供至关重要的信息；

• 删除不可见控制字符，避免意外导致数据处理中断。

所以，数据清洗将最大限度地保留自然文本的统计特征，对于其中
的“对”与“错”，则交由模型来进行学习，而非通过人工进行过多干
预。

通过如下脚本启动数据清洗过程。

其中，数据清洗脚本wikidata_cleaning.py的内容如下。



3.4.4 Common Crawl数据

Common Crawl包含了超过7年的网络爬虫数据集，包含原始网页数
据、元数据提取和文本提取。数据存储在Amazon Web服务的公共数据集
和遍布全球的多个学术云平台上，拥有PB级规模。Common Crawl的数据
非常庞大，因此想处理好如此庞大的数据并不是一件容易的事情。

Facebook提出的CC-Net工具[3]可用于获取Common Crawl数据，并且提供
了一套相对完整的数据处理流程。其应用方法较为简单，感兴趣的读者
可以自行查阅相关的参考资料。

3.5 更多数据集

3.1节介绍的NLTK工具集提供了少量的自然语言处理数据集，可用



于模型演示和简单的系统测试。近期，HuggingFace公司发布了更大规
模的语料库集合——HuggingFace Datasets，与其他自然语言处理数据
集相比，具有如下的特点：

• 数据集数目多：截至2021年3月，共收录了近200种语言的700多
个数据集，涵盖了文本分类、机器翻译和阅读理解等众多自然语言处理
任务。之所以能有如此多的数据，主要依赖于社区的贡献，任何用户都
可以共享相关的数据集。除了支持用户可以直接使用这些公开的数据
集，还支持其方便地调用自己私有的数据集。

• 兼容性好：可以直接被PyTorch、TensorFlow等深度学习框架，
以及pandas、NumPy等数据处理工具调用，同时支持CSV、JSON等数据格
式的读取，并提供了丰富、灵活的调用接口和数据处理接口。

• 数据读取效率高：可以在仅占用少量内存的条件下，高速地读取
大量的数据。

• 丰富的评价方法：如2.4节介绍的，由于自然语言处理任务类型
众多，需要多种不同的评价指标对它们进行评价。为此，HuggingFace
Datasets除了提供多种通用的评价方法，还针对不同的数据集提供了更
有针对性的评价方法。在使用HuggingFace Datasets之前，首先需要使
用以下命令安装datasets包。

下面通过一些示例，演示如何调用datasets提供的数据集以及评价
方法。



datasets还提供了一些额外的函数，用于对数据进行处理或转换为
PyTorch、TensorFlow等工具集能够处理的格式，具体调用方法见相应
的使用文档。

datasets提供的评价方法调用示例如下。

最后，需要注意的是，除了能直接使用上述已有的评价方法，用户



还可以增加自定义的评价方法，甚至提交到HuggingFace Hub上供他人
使用。

3.6 小结

本章介绍了三种常用的自然语言处理基础以及神经网络工具集，分
别为：英文自然语言处理基础工具NLTK、中文自然语言处理基础工具
LTP，以及本书所使用的深度学习框架PyTorch。另外，还介绍了预训练
模型的基础之一——大规模文本数据的获取和简单处理方式，以及使用
HuggingFace Datasets获取更多数据集的方法。本书后续章节内容都紧
密依赖这些工具和数据。

习题

3.1 使用NLTK工具下载简·奥斯汀所著的Emma小说原文，并去掉其
中的停用词。

3.2 使用NLTK提供的WordNet计算两个词（不是词义）的相似度，
计算方法为两词各种词义之间的最大相似度。

3.3 使用NLTK提供的SentiWordNet工具计算一个句子的情感倾向
性，计算方法为每个词所处词性下的每个词义情感倾向性之和。

3.4 使用真实文本对比LTP与正向最大匹配分词的结果，并人工分
析哪些结果LTP正确，正向最大匹配错误；哪些结果LTP错误，正向最大
匹配正确；以及哪些结果两个结果都错误。

3.5 分析view、reshape、transpose和permute四种调整张量形状
方法各自擅长处理的问题。

3.6 安装PyTorch并实际对比使用和不使用GPU时，三个大张量相乘
时的效率。

3.7 下载最新的Common Crawl数据，并实现抽取中文、去重、繁简
转换、数据清洗等功能。



[1] 古腾堡项目收集的一小部分电子书。



  第4章 

自然语言处理中的神经网络基础

本章首先介绍在自然语言处理中常用的四种神经网络模型，即多层
感知器模型、卷积神经网络、循环神经网络和以Transformer为代表的
自注意力模型。然后，介绍如何通过优化模型参数训练这些模型。除介
绍每种模型的PyTorch调用方式外，还将介绍如何使用以上模型完成两
个综合性的实战项目，即：以情感分类为代表的文本分类任务和以词性
标注为代表的序列标注任务。

4.1 多层感知器模型

4.1.1 感知器

感知器（Perceptron）是最简单也是最早出现的机器学习模型，其
灵感直接来源于生产生活的实践。例如，在公司面试时，经常由多位面
试官对一位面试者打分，最终将多位面试官的打分求和，如果分数超过
一定的阈值，则录用该面试者，否则不予录用。假设有 n 位面试官，
每人的打分分别为 x1， x2，···， xn，则总分s=x1+x2+···

+xn，如果s≥t，则给予录用，其中t被称为阈值，x1， x2，···，

xn被称为输入，可以使用向量x=[x1， x2，···， xn]表示。然而，

在这些面试官中，有一些经验比较丰富，而有一些则是刚入门的新手，
如果简单地将它们的打分进行相加，最终的得分显然不够客观，因此可
以通过对面试官的打分进行加权的方法解决，即为经验丰富的面试官赋
予较高的权重，而为新手赋予较低的权重。假设n位面试官的权重分别
为w1， w2，···， wn，则最终的分数为s=w1x1+w2x2+···+wnxn，

同样可以使用向量w=[w1， w2，···， wn]表示n个权重，则分数可以

写成权重向量和输入向量的点积，即s=w · x，于是最终的输出y为：



式中，输出y=1表示录用，y=0表示不录用。这就是感知器模型，其
还可以写成以下的形式：

式中，b=−t，又被称为偏差项（Bias）。

当使用感知器模型时，有两个棘手的问题需要加以解决。首先是如
何将一个问题的原始输入（Raw Input）转换成输入向量x，此过程又被
称为特征提取（Feature Extraction）。在自然语言处理中，其实就是
如何用数值向量表示文本，可以使用2.1节介绍的文本表示方法；其次
是如何合理地设置权重w和偏差项b（它们也被称为模型参数），此过程
又被称为参数学习（也称参数优化或模型训练），将在4.5节介绍。

很多现实生活中遇到的问题都可以使用感知器模型加以解决，比如
识别一个用户评论句子的情感极性是褒义还是贬义等，在自然语言处理
中，这些问题又被归为文本分类问题。

4.1.2 线性回归

4.1.1节介绍的感知器是一个分类模型，即输出结果为离散的类别
（如褒义或贬义）。除了分类模型，还有一大类机器学习模型被称为回
归（Regression）模型，其与分类模型的本质区别在于输出的结果不是
离散的类别，而是连续的实数值。在实际生活中，回归模型也有大量的
应用，如预测股票的指数、天气预报中温度的预测等。类似地，在情感
分析中，如果目标不是预测文本的情感极性，而是一个情感强弱的分
数，如电商或影评网站中用户对商品或电影的评分等，则是一个回归问
题。

线性回归（Linear Regression）是最简单的回归模型。与感知器
类似，线性回归模型将输出y建模为对输入x中各个元素的线性加权和，
最后也可以再加上偏差项b，即y=w1x1+w2x2+···+wnxn+b=w · x+b。



4.1.3 Logistic回归

线性回归输出值的大小（值域）是任意的，有时需要将其限制在一
定的范围内。有很多函数能够实现此功能，它们又被称为激活函数
（Activation Function），其中Logistic函数经常被用到，其形式
为：

该函数能将y的值限制在0（z→ −∞）到L（z→+∞）之间，当z=
z0时，y=L/2；k控制了函数的陡峭程度。若z=w1x1+w2x2+···

+wnxn+b，此模型又被称为Logistic回归（Logistic Regression）模

型。

虽然被称为回归模型，但是Logistic回归经常被用于分类问题。这
是如何做到的呢？如果将Logistic函数中的参数进行如下设
置，L=1、k=1、z0=0，此时函数形式为：

该函数又被称为Sigmoid函数，图4-1展示了该函数的形状（呈S
形，所以被称为Sigmoid函数），其值域恰好在0∼1之间，所以经过
Sigmoid函数归一化的模型输出可以看作一个输入属于某一类别的概率
值（假设只有两个类别，因此也被称为二元分类问题）。除了可以输出
概率值，Sigmoid函数另一个较好的性质是其导数比较容易求得（y
′=y（1−y）），这为后续使用基于梯度的参数优化算法带来了一定的
便利。



图4-1 Sigmoid函数图示

4.1.4 Softmax回归

Sigmoid回归虽然可以用于处理二元分类问题，但是很多现实问题
的类别可能不止两个，如手写体数字的识别，输出属于0∼9共10个数字
中的一个，即有10个类别。在自然语言处理中，如文本分类、词性标注
等问题，均属于多元分类问题，即使是情感极性识别也一样，除了褒义
和贬义，还可以增加一个中性类别。那么，如何处理多元分类问题呢？
其中一种方法和Sigmoid回归的思想类似，即对第i个类别使用线性回归
打一个分数，zi=wi1x1+wi2x2+···+winxn+bi。式中，wij表示第i个类

别对应的第j个输入的权重。然后，对多个分数使用指数函数进行归一
化计算，并获得一个输入属于某个类别的概率。该方法又称Softmax回
归，具体公式为：

式中，z 表示向量 [z1， z2，···， zm]；m 表示类别数；yi表

示第 i 个类别的概率。图4-2展示了Softmax回归模型示意图。

当m=2，即处理二元分类问题时，式（4-5）可以写为：

此公式即Sigmoid函数形式，也就是Sigmoid函数是Softmax函数在
处理二元分类问题时的一个特例。



图4-2 Softmax回归模型示意图

进一步地，将Softmax回归模型公式展开，其形式为：

然后，可以使用矩阵乘法的形式重写该公式，具体为：

更进一步地，可以使用张量表示输入、输出以及其中的参数，即：

式（4-9）中，x=[x1， x2，···， xn]
⊤，y=[y1， y2，

···， ym]
⊤， ，b=[b1， b2，

···， bm]
⊤。对向量x执行W x+b运算又被称为对x进行线性映射或线

性变换。

4.1.5 多层感知器

以上介绍的模型本质上都是线性模型，然而现实世界中很多真实的
问题不都是线性可分的，即无法使用一条直线、平面或者超平面分割不
同的类别，其中典型的例子是异或问题（Exclusive OR，XOR），即假



设输入为x1和x2，如果它们相同，即当x1=0、x2=0或x1=1、x2=1时，输

出y=0；如果它们不相同，即当x1=0、x2=1或x1=1、x2=0时，输出y=1，

如图4-3所示。此时，无法使用线性分类器恰当地将输入划分到正确的
类别。

图4-3 异或问题示例

多层感知器（Multi-layer Perceptron，MLP）是解决线性不可分
问题的一种解决方案。多层感知器指的是堆叠多层线性分类器，并在中
间层（也叫隐含层，Hid-den layer）增加非线性激活函数。例如，可
以设计如下的多层感知器：

式中，ReLU（Rectified Linear Unit）是一种非线性激活函数，
其定义为当某一项输入小于0时，输出为0；否则输出相应的输入值，即

ReLU（z）=max（0， z）。W[i]和b[i]分别表示第i层感知器的权重和偏
置项。

如果将相应的参数进行如下的设置： ，b[1]=

[0，−1]⊤，W[2]=[1，−2]，b[2]=[0]，即可解决异或问题。该多层感知
器的网络结构如图4-4所示。

那么，该网络是如何解决异或问题的呢？其主要通过两个关键的技
术，即增加了一个含两个节点的隐含层（h）以及引入非线性激活函数
（ReLU）。通过设置恰当的参数值，将在原始输入空间中线性不可分的
问题映射到新的隐含层空间，使其在该空间内线性可分。如图4-5所



示，原空间内x=[0，0]和x=[1，1]两个点，分别被映射到h=[0，0]和h=
[2，1]；而x=[0，1]和x=[1，0]两个点，都被映射到了h=[1，0]。此时
就可以使用一条直线将两类点分割，即成功转换为线性可分问题。

图4-4 一种解决异或问题的多层感知器的结构

图4-5 多层感知器隐含层空间示例

图4-6展示了更一般的多层感知器，其中引入了更多的隐含层（没
有画出非线性激活函数），并将输出层设置为多类分类层（使用
Softmax函数）。输入层和输出层的大小一般是固定的，与输入数据的
维度以及所处理问题的类别相对应，而隐含层的大小、层数和激活函数
的类型等需要根据经验以及实验结果设置，它们又被称为超参数
（Hyper-parameter）。一般来讲，隐含层越大、层数越多，即模型的
参数越多、容量越大，多层感知器的表达能力就越强，但是此时较难优
化网络的参数。而如果隐含层太小、层数过少，则模型的表达能力会不
足。为了在模型容量和学习难度中间寻找到一个平衡点，需要根据不同
的问题和数据，通过调参过程寻找合适的超参数组合。



图4-6 多层感知器示意图

4.1.6 模型实现

1.神经网络层与激活函数

上面介绍了从简单的线性回归到复杂的多层感知器等多种神经网络
模型，接下来介绍如何使用PyTorch实现这些模型。实际上，使用第3章
介绍的PyTorch提供的基本张量存储及运算功能，就可以实现这些模
型，但是这种实现方式不但难度高，而且容易出错。因此，PyTorch将
常用的神经网络模型封装到了torch.nn包内，从而可以方便灵活地加以
调用。如通过以下代码，就可以创建一个线性映射模型（也叫线性
层）。

代码中的 in_features 是输入特征的数目，out_features 是输出
特征的数目。可以使用该线性映射层实现线性回归模型，只要将输出特
征的数目设置为1 即可。当实际调用线性层时，可以一次性输入多个样
例，一般叫作一个批次（Batch），并同时获得每个样例的输出。所
以，如果输入张量的形状是 （batch，in_features），则输出张量的
形状是（batch，out_features）。采用批次操作的好处是可以充分利
用GPU等硬件的多核并行计算能力，大幅提高计算的效率。具体示例如
下。



Sigmoid、Softmax等各种激活函数包含在torch.nn.functional
中，实现对输入按元素进行非线性运算，调用方式如下。

除了 Sigmoid、Softmax 和 ReLU 函数，PyTorch 还提供了 tanh
等多种激活函数。

2.自定义神经网络模型

通过对上文介绍的神经网络层以及激活函数进行组合，就可以搭建
更复杂的神经网络模型。在 PyTorch 中构建一个自定义神经网络模型
非常简单，就是从torch.nn中的Module类派生一个子类，并实现构造函
数和forward函数。其中，构造函数定义了模型所需的成员对象，如构
成该模型的各层，并对其中的参数进行初始化等。而forward函数用来
实现该模块的前向过程，即对输入进行逐层的处理，从而得到最终的输
出结果。下面以多层感知器模型为例，介绍如何自定义一个神经网络模
型，其代码如下。



最终的输出如下。

4.2 卷积神经网络

4.2.1 模型结构

在多层感知器中，每层输入的各个元素都需要乘以一个独立的参数
（权重），这一层又叫作全连接层（Fully Connected Layer）或稠密
层（Dense Layer）。然而，对于某些类型的任务，这样做并不合适，
如在图像识别任务中，如果对每个像素赋予独立的参数，一旦待识别物



体的位置出现轻微移动，识别结果可能会发生较大的变化。在自然语言
处理任务中也存在类似的问题，如对于情感分类任务，句子的情感极性
往往由个别词或短语决定，而这些决定性的词或短语在句子中的位置并
不固定，使用全连接层很难捕捉这种关键的局部信息。

为了解决以上问题，一个非常直接的想法是使用一个小的稠密层提
取这些局部特征，如图像中固定大小的像素区域、文本中词的N-gram
等。为了解决关键信息位置不固定的问题，可以依次扫描输入的每个区
域，该操作又被称为卷积（Con-volution）操作。其中，每个小的、用
于提取局部特征的稠密层又被称为卷积核（Kernel）或者滤波器
（Filter）。

卷积操作输出的结果还可以进行进一步聚合，这一过程被称为池化
（Pooling）操作。常用的池化操作有最大池化、平均池化和加和池化
等。以最大池化为例，其含义是仅保留最有意义的局部特征。如在情感
分类任务中，保留的是句子中对于分类最关键的N-gram信息。池化操作
的好处是可以解决样本的输入大小不一致的问题，如对于情感分类，有
的句子比较长，有的句子比较短，因此不同句子包含的N-gram数目并不
相同，导致抽取的局部特征个数也不相同，然而经过池化操作后，可以
保证最终输出相同个数的特征。

然而，如果仅使用一个卷积核，则只能提取单一类型的局部特征。
而在实际问题中，往往需要提取很多种局部特征，如在情感分类中不同
的情感词或者词组等。因此，在进行卷积操作时，可以使用多个卷积核
提取不同种类的局部特征。卷积核的构造方式大致有两种，一种是使用
不同组的参数，并且使用不同的初始化参数，获得不同的卷积核；另一
种是提取不同尺度的局部特征，如在情感分类中提取不同大小的N-
gram。

既然多个卷积核输出多个特征，那么这些特征对于最终分类结果的
判断，到底哪些比较重要，哪些不重要呢？其实只要再经过一个全连接
的分类层就可以做出最终的决策。

最后，还可以将多个卷积层加池化层堆叠起来，形成更深层的网
络，这些网络统称为卷积神经网络（Convolutional Neural Network，
CNN）。

图4-7给出了一个卷积神经网络的示意图，用于对输入的句子分



类。其中，输入为“我喜欢自然语言处理。”6个词。根据2.1.3节介绍
的方法，首先将每个词映射为一个词向量，此处假设每个词向量的维度
为5（图中输入层的每列表示一个词向量，每个方框表示向量的一个元
素）。然后，分别使用4个卷积核对输入进行局部特征提取，其中前两
个卷积核的宽度（N-gram中N的大小）为4（黄色和蓝色），后两个卷积
核的宽度为3（绿色和红色），卷积操作每次滑动1个词，则每个卷积核
的输出长度为L−N+1，其中L为单词的个数，N为卷积核的宽度，简单计
算可以得到前两组卷积核的输出长度为3，后两组卷积核的输出长度为
4。接下来，经过全序列的最大池化操作，将不同卷积核的输出分别聚
合为1个输出，并拼接为一个特征向量，最终经过全连接层分类。

上面这种沿单一方向滑动的卷积操作又叫作一维卷积，适用于自然
语言等序列数据。而对于图像等数据，由于卷积核不但需要横向滑动，
还需要纵向滑动，此类卷积叫作二维卷积。类似的还有三维卷积，由于
它们在自然语言处理中并不常用，因此本书不进行过多的介绍，感兴趣
的读者请参考相关的深度学习书籍。

图4-7 卷积神经网络示意图

与4.1.5节介绍的多层感知器模型类似，卷积神经网络中的信息也



是从输入层经过隐含层，然后传递给输出层，按照一个方向流动，因此
它们都被称为前馈神经网络（Feed-Forward Network，FFN）。

4.2.2 模型实现

PyTorch的torch.nn包中使用Conv1d、Conv2d或Conv3d类实现卷积
层，它们分别表示一维卷积、二维卷积和三维卷积。此处仅介绍自然语
言处理中常用的一维卷积（Conv1d），其构造函数至少需要提供三个参
数：in_channels为输入通道的个数，在输入层对应词向量的维度；
out_channels为输出通道的个数，对应卷积核的个数；kernel_size为
每个卷积核的宽度。当调用该Conv1d对象时，输入数据形状为
（batch，in_channels，seq_len），输出数据形状为（batch，
out_channels，seq_len），其中在输入数据和输出数据中，seq_len分
别表示输入的序列长度和输出的序列长度。与图4-7相对应的网络构建
代码如下。

接下来需要调用torch.nn包中定义的池化层类，主要有最大池化、
平均池化等。与卷积层类似，各种池化方法也分为一维、二维和三维三



种。例如MaxPool1d是一维最大池化，其构造函数至少需要提供一个参
数——kernel_size，即池化层核的大小，也就是对多大范围内的输入
进行聚合。如果对整个输入序列进行池化，则其大小应为卷积层输出的
序列长度。

除了使用池化层对象实现池化，PyTorch还在torch.nn.functional
中实现了池化函数，如max_pool1d等，即无须定义一个池化层对象，就
可以直接调用池化功能。这两种实现方式基本一致，一个显著的区别在
于使用池化函数实现无须事先指定池化层核的大小，只要在调用时提供
即可。当处理不定长度的序列时，此种实现方式更加适合，具体示例如
下。



由于outputs_pool1和outputs_pool2是两个独立的张量，为了进行
下一步操作，还需要调用 torch.cat 函数将它们拼接起来。在此之
前，还需要调用squeeze函数将最后一个为1的维度删除，即将2行1列的
矩阵变为1个向量。

池化后，再连接一个全连接层，实现分类功能。



4.3 循环神经网络

以上介绍的多层感知器与卷积神经网络均为前馈神经网络，信息按
照一个方向流动。本节介绍另一类在自然语言处理中常用的神经网络
——循环神经网络（Recurrent Neural Network，RNN），即信息循环
流动。在此主要介绍两种循环神经网络——原始的循环神经网络和目前
常用的长短时记忆网络（Long Short-Term Memory，LSTM）。

4.3.1 模型结构

循环神经网络指的是网络的隐含层输出又作为其自身的输入，其结

构如图4-8所示，图中Wxh、bxh，Whh、bhh和Why、bhy分别是输入层到隐含
层、隐含层到隐含层和隐含层到输出层的参数。当实际使用循环神经网
络时，需要设定一个有限的循环次数，将其展开后相当于堆叠多个共享
隐含层参数的前馈神经网络。

图4-8 循环神经网络示意图

当使用循环神经网络处理一个序列输入时，需要将循环神经网络按
输入时刻展开，然后将序列中的每个输入依次对应到网络不同时刻的输
入上，并将当前时刻网络隐含层的输出也作为下一时刻的输入。图4-9
展示了循环神经网络处理序列输入的示意图，其中序列的长度为n。按
时刻展开的循环神经网络可以使用如下公式描述：



式中， 是激活函数，其形状与Sigmoid函数类
似，只不过值域在−1到+1之间；t是输入序列的当前时刻，其隐含层ht
不但与当前的输入xt有关，而且与上一时刻的隐含层ht−1有关，这实际

上是一种递归形式的定义。每个时刻的输入经过层层递归，对最终的输
出产生一定的影响，每个时刻的隐含层ht承载了1 ∼ t时刻的全部输入

信息，因此循环神经网络中的隐含层也被称作记忆（Memory）单元。

图4-9 循环神经网络处理序列输入示意图

以上循环神经网络在最后时刻产生输出结果，此时适用于处理文本
分类等问题。除此之外，如图4-10所示，还可以在每个时刻产生一个输
出结果，这种结构适用于处理自然语言处理中常见的序列标注
（Sequence Labeling）问题（见2.3.2节），如词性标注、命名实体识
别，甚至分词等。

图4-10 循环神经网络用于处理序列标注问题的示意图

4.3.2 长短时记忆网络

在原始的循环神经网络中，信息是通过多个隐含层逐层传递到输出
层的。直观上，这会导致信息的损失；更本质地，这会使得网络参数难



以优化[1]。长短时记忆网络（LSTM）可以较好地解决该问题。

长短时记忆网络首先将式（4-13）的隐含层更新方式修改为：

这样做的一个直观好处是直接将hk与ht（k＜t）进行了连接，跨过

了中间的t−k层，从而减小了网络的层数，使得网络更容易被优化。其
证明方式也比较简单，即：ht=ht−1+ut=ht−2+ut

−1+ut=hk+uk+1+uk+2+···+ut−1+ut。

不过式（4-16）简单地将旧状态ht−1和新状态ut进行相加，这种更

新方式过于粗糙，并没有考虑两种状态对ht贡献的大小。为解决这一问

题，可以通过前一时刻的隐含层和当前输入计算一个系数，并以此系数
对两个状态加权求和，具体公式为：

式中，σ表示Sigmoid函数，其输出恰好介于0到1之间，可作为加
权求和的系数；⊙表示Hardamard乘积，即按张量对应元素进行相
乘；ft被称作遗忘门（Forget gate），因为如果其较小时，旧状态ht−1
对当前状态的贡献也较小，也就是将过去的信息都遗忘了。

然而，这种加权的方式有一个问题，就是旧状态ht−1和新状态ut的

贡献是互斥的，也就是如果ft较小，则1−ft就会较大，反之亦然。但

是，这两种状态对当前状态的贡献有可能都比较大或者比较小，因此需
要使用独立的系数分别控制。因此，引入新的系数以及新的加权方式，
即：

式中，新的系数it用于控制输入状态ut对当前状态的贡献，因此又

被称作输入门（Input gate）。



类似地，还可以对输出增加门控机制，即输出门（Output
gate）：

式中，ct又被称为记忆细胞（Memory cell），即存储（记忆）了

截至当前时刻的重要信息。与原始的循环神经网络一样，既可以使用hn
预测最终的输出结果，又可以使用ht预测每个时刻的输出结果。

无论是传统的循环神经网络还是LSTM，信息流动都是单向的，在一
些应用中这并不合适，如对于词性标注任务，一个词的词性不但与其前
面的单词及其自身有关，还与其后面的单词有关，但是传统的循环神经
网络并不能利用某一时刻后面的信息。为了解决该问题，可以使用双向
循环神经网络或双向LSTM，简称Bi-RNN或Bi-LSTM，其中Bi代表
Bidirectional。其思想是将同一个输入序列分别接入向前和向后两个
循环神经网络中，然后再将两个循环神经网络的隐含层拼接在一起，共
同接入输出层进行预测。双向循环神经网络结构如图4-11所示。

图4-11 双向循环神经网络结构

另一类对循环神经网络的改进方式是将多个网络堆叠起来，形成堆
叠循环神经网络（Stacked RNN），如图4-12所示。此外，还可以在堆
叠循环神经网络的每一层加入一个反向循环神经网络，构成更复杂的堆
叠双向循环神经网络。



图4-12 堆叠循环神经网络示意图

4.3.3 模型实现

循环神经网络在PyTorch的torch.nn包中也有相应的实现，即RNN
类。其构造函数至少需要提供两个参数：input_size表示每个时刻输入
的大小，hidden_size表示隐含层的大小。另外，根据习惯，通常将
batch_first设为True（其默认值为False），即输入和输出的第1维代
表批次的大小（即一次同时处理序列的数目）。当调用该RNN对象时，
输入数据形状为（batch，seq_len，input_size），输出数据有两个，
分别为隐含层序列和最后一个时刻的隐含层，它们的形状分别为
（batch，seq_len，hidden_size）和（1，batch，hidden_size）。具
体的示例代码如下。



当初始化RNN时，还可通过设置其他参数修改网络的结构，如
bidirectional=True（双向RNN，默认为False）、num_layers（堆叠的
循环神经网络层数，默认为1）等。

torch.nn包中还提供了LSTM类，其初始化的参数以及输入数据与
RNN相同，不同之处在于其输出数据除了最后一个时刻的隐含层hn，还
输出了最后一个时刻的记忆细胞cn，代码示例如下。



4.3.4 基于循环神经网络的序列到序列模型

除了能够处理分类问题和序列标注问题，循环神经网络另一个强大
的功能是能够处理序列到序列的理解和生成问题，相应的模型被称为序
列到序列模型，也被称为编码器--解码器模型。序列到序列模型指的是
首先对一个序列（如一个自然语言句子）编码，然后再对其解码，即生
成一个新的序列。很多自然语言处理问题都可以看作序列到序列问题，
如机器翻译，即首先对源语言的句子编码，然后生成相应的目标语言翻
译。

图4-13展示了一个基于序列到序列模型进行机器翻译的示例。首先
编码器使用循环神经网络对源语言句子编码，然后以最后一个单词对应
的隐含层作为初始，再调用解码器（另一个循环神经网络）逐词生成目
标语言的句子。图中的BOS表示句子起始标记。



图4-13 序列到序列模型

基于循环神经网络的序列到序列模型有一个基本假设，就是原始序
列的最后一个隐含状态（一个向量）包含了该序列的全部信息。然而，
该假设显然不合理，尤其是当序列比较长时，要做到这一点就更困难。
为了解决该问题，注意力模型应运而生。

4.4 注意力模型

4.4.1 注意力机制

为了解决序列到序列模型记忆长序列能力不足的问题，一个非常直
观的想法是，当要生成一个目标语言单词时，不光考虑前一个时刻的状
态和已经生成的单词，还考虑当前要生成的单词和源语言句子中的哪些
单词更相关，即更关注源语言的哪些词，这种做法就叫作注意力机制
（Attention mechanism）。图4-14给出了一个示例，假设模型已经生
成单词“我”后，要生成下一个单词，显然和源语言句子中
的“love”关系最大，因此将源语言句子中“love”对应的状态乘以一
个较大的权重，如0.6，而其余词的权重则较小，最终将源语言句子中
每个单词对应的状态加权求和，并用作新状态更新的一个额外输入。

注意力权重的计算公式为：

式中，hs表示源序列中s时刻的状态；ht−1表示目标序列中前一个时

刻的状态；attn是注意力计算公式，即通过两个输入状态的向量，计算



一个源序列s时刻的注意力分数 ； ，其中 L
为源序列的长度；最后对整个源序列每个时刻的注意力分数使用
Softmax函数进行归一化，获得最终的注意力权重αs。

图4-14 基于注意力机制的序列到序列模型示例

注意力公式attn的计算方式有多种，如：

通过引入注意力机制，使得基于循环神经网络的序列到序列模型的
准确率有了大幅度的提高。

4.4.2 自注意力模型

受注意力机制的启发，当要表示序列中某一时刻的状态时，可以通
过该状态与其他时刻状态之间的相关性（注意力）计算，即所谓的“观
其伴、知其义”，这又被称作自注意力机制（Self-attention）。

具体地，假设输入为n个向量组成的序列x1， x2，···， xn，输

出为每个向量对应的新的向量表示y1， y2，···， yn，其中所有向

量的大小均为d。那么，yi的计算公式为：



式中，j 是整个序列的索引值；αij是 xi与 xj之间的注意力（权

重），其通过式（4-26）中的attn函数计算，然后再经过Softmax函数
进行归一化后获得。直观上的含义是如果xi与xj越相关，则它们计算的

注意力值就越大，那么xj对xi对应的新的表示yi的贡献就越大。

通过自注意力机制，可以直接计算两个距离较远的时刻之间的关
系。而在循环神经网络中，由于信息是沿着时刻逐层传递的，因此当两
个相关性较大的时刻距离较远时，会产生较大的信息损失。虽然引入了
门控机制模型，如LSTM等，可以部分解决这种长距离依赖问题，但是治
标不治本。因此，基于自注意力机制的自注意力模型已经逐步取代循环
神经网络，成为自然语言处理的标准模型。

4.4.3 Transformer

然而，要想真正取代循环神经网络，自注意力模型还需要解决如下
问题：

• 在计算自注意力时，没有考虑输入的位置信息，因此无法对序列
进行建模；

• 输入向量xi同时承担了三种角色，即计算注意力权重时的两个向

量以及被加权的向量，导致其不容易学习；

• 只考虑了两个输入序列单元之间的关系，无法建模多个输入序列
单元之间更复杂的关系；

• 自注意力计算结果互斥，无法同时关注多个输入。

下面分别就这些问题给出相应的解决方案，融合了以下方案的自注
意力模型拥有一个非常炫酷的名字——Transformer。这个单词并不容
易翻译，从本意上讲，其是将一个向量序列变换成另一个向量序列，所
以可以翻译成“变换器”或“转换器”。其还有另一个含义是“变压
器”，也就是对电压进行变换，所以翻译成变压器也比较形象。当然，
还有一个更有趣的翻译是“变形金刚”，这一翻译不但体现了其能变换



的特性，还寓意着该模型如同变形金刚一样强大。目前，Transformer
还没有一个翻译的共识，绝大部分人更愿意使用其英文名。

1.融入位置信息

位置信息对于序列的表示至关重要，原始的自注意力模型没有考虑
输入向量的位置信息，导致其与词袋模型类似，两个句子只要包含的词
相同，即使顺序不同，它们的表示也完全相同。为了解决这一问题，需
要为序列中每个输入的向量引入不同的位置信息以示区分。有两种引入
位置信息的方式——位置嵌入（Position Embeddings）和位置编码
（Position Encodings）。其中，位置嵌入与词嵌入类似，即为序列中
每个绝对位置赋予一个连续、低维、稠密的向量表示。而位置编码则是

使用函数 ，直接将一个整数（位置索引值）映射到一个d
维向量上。映射公式为：

式中，p为序列中的位置索引值；0≤i＜d是位置编码向量中的索引
值。

无论是使用位置嵌入还是位置编码，在获得一个位置对应的向量
后，再与该位置对应的词向量进行相加，即可表示该位置的输入向量。
这样即使词向量相同，但是如果它们所处的位置不同，其最终的向量表
示也不相同，从而解决了原始自注意力模型无法对序列进行建模的问
题。

2.输入向量角色信息

原始的自注意力模型在计算注意力时直接使用两个输入向量，然后
使用得到的注意力对同一个输入向量加权，这样导致一个输入向量同时
承担了三种角色：查询（Query）、键（Key）和值（Value）。更好的
做法是，对不同的角色使用不同的向量。为了做到这一点，可以使用不
同的参数矩阵对原始的输入向量做线性变换，从而让不同的变换结果承

担不同的角色。具体地，分别使用三个不同的参数矩阵Wq、Wk和Wv将输

入向量xi映射为三个新的向量qi=W
qxi、ki=W

kxi和vi=W
vxi，分别表示查



询、键和值对应的向量。新的输出向量计算公式为：

式中， ，其中L为序列的长度。

3.多层自注意力

原始的自注意力模型仅考虑了序列中任意两个输入序列单元之间的
关系，而在实际应用中，往往需要同时考虑更多输入序列单元之间的关
系，即更高阶的关系。如果直接建模高阶关系，会导致模型的复杂度过
高。一方面，类似于图模型中的消息传播机制（Message
Propogation），这种高阶关系可以通过堆叠多层自注意力模型实现。
另一方面，类似于多层感知器，如果直接堆叠多层注意力模型，由于每
层的变换都是线性的（注意力计算一般使用线性函数），最终模型依然
是线性的。因此，为了增强模型的表示能力，往往在每层自注意力计算
之后，增加一个非线性的多层感知器（MLP）模型。另外，如果将自注
意力模型看作特征抽取器，那么多层感知器就是最终的分类器。同时，
为了使模型更容易学习，还可以使用层归一化（Layer
Normalization）、残差连接（Residual Connections）等深度学习的
训练技巧。自注意力层、非线性层以及以上的这些训练技巧，构成了一
个更大的Transformer层，也叫作Transformer块（Block），如图4-15
所示。

图4-15 Transformer块



4.自注意力计算结果互斥

由于自注意力结果需要经过归一化，导致即使一个输入和多个其他
的输入相关，也无法同时为这些输入赋予较大的注意力值，即自注意力
结果之间是互斥的，无法同时关注多个输入。因此，如果能使用多组自
注意力模型产生多组不同的注意力结果，则不同组注意力模型可能关注
到不同的输入上，从而增强模型的表达能力。那么如何产生多组自注意
力模型呢？方法非常简单，只需要设置多组映射矩阵即可，然后将产生
的多个输出向量拼接。为了将输出结果作为下一组的输入，还需要将拼
接后的输出向量再经过一个线性映射，映射回d维向量。该模型又叫作
多头自注意力（Multi-head Self-attention）模型。从另一方面理
解，多头自注意力机制相当于多个不同的自注意力模型的集成
（Ensemble），也会增强模型的效果。类似卷积神经网络中的多个卷积
核，也可以将不同的注意力头理解为抽取不同类型的特征。

4.4.4 基于Transformer的序列到序列模型

以上介绍的Transformer模型可以很好地对一个序列编码。此外，
与循环神经网络类似，Transformer也可以很容易地实现解码功能，将
两者结合起来，就实现了一个序列到序列的模型，于是可以完成机器翻
译等多种自然语言处理任务。解码模块的实现与编码模块基本相同，不
过要接收编码模块的最后一层输出作为输入，这也叫作记忆
（Memory），另外还要将已经部分解码的输出结果作为输入，如图4-16
所示。



图4-16 基于Transformer的序列到序列模型示例

4.4.5 Transformer模型的优缺点

与循环神经网络相比，Transformer能够直接建模输入序列单元之
间更长距离的依赖关系，从而使得Transformer对于长序列建模的能力
更强。另外，在Trans-former的编码阶段，由于可以利用GPU等多核计
算设备并行地计算Transformer块内部的自注意力模型，而循环神经网
络需要逐个计算，因此Transformer具有更高的训练速度。

不过，与循环神经网络相比，Transformer的一个明显的缺点是参
数量过于庞大。每一层的Transformer块大部分参数集中在图4-15中的
绿色方框中，即自注意力模型中输入向量的三个角色映射矩阵、多头机
制导致相应参数的倍增和引入非线性的多层感知器等。更主要的是，还
需要堆叠多层Transformer块，从而参数量又扩大多倍。最终导致一个
实用的Transformer模型含有巨大的参数量。以本书后续章节将要介绍
的BERT模型为例，BERT-base含有12层Transformer块，参数量超过1.1
亿个，而24层的BERT-large，参数量达到了3.4亿个之多。巨大的参数
量导致Transformer模型非常不容易训练，尤其是当训练数据较小时。
因此，为了降低模型的训练难度，基于大规模数据的预训练模型应运而
生，这也是本书将要介绍的重点内容。唯此，才能发挥Transformer模
型强大的表示能力。

4.4.6 模型实现

新版本的PyTorch（1.2版及以上）实现了Transformer模型。其
中，nn.Trans formerEncoder实现了编码模块，它是由多层
Transformer块构成的，每个块使用TransformerEncoderLayer实现。下
面演示具体的示例。



然后，可以将多个Transformer块堆叠起来，构成一个完整的
nn.Transformer Encoder。

解码模块也类似，TransformerDecoderLayer定义了一个解码模块
的Trans-former块，通过多层块堆叠构成nn.TransformerDecoder，下
面演示具体的调用方式。



4.5 神经网络模型的训练

以上章节介绍了自然语言处理中几种常用的神经网络（深度学习）
模型，其中每种模型内部都包含大量的参数，如何恰当地设置这些参数
是决定模型准确率的关键，而寻找一组优化参数的过程又叫作模型训练
或学习。

4.5.1 损失函数

为了评估一组参数的好坏，需要有一个准则，在机器学习中，又被

称为损失函数（Loss Function）[2]。简单来讲，损失函数用于衡量在
训练数据集上模型的输出与真实输出之间的差异。因此，损失函数的值
越小，模型输出与真实输出越相似，可以认为此时模型表现越好。不过
如果损失函数的值过小，那么模型就会与训练数据集过拟合
（Overfit），反倒不适用于新的数据。所以，在训练深度学习模型
时，要避免产生过拟合的现象，有多种技术可以达到此目的，如正则化
（Regularization）、丢弃正则化（Dropout）和早停法（Early
Stopping）等。本书不对此进行过多的介绍，如要了解更多内容，可以
参考其他神经网络或深度学习相关书籍。

在此介绍深度学习中两种常用的损失函数：均方误差（Mean
Squared Error，MSE）损失和交叉熵（Cross-Entropy，CE）损失。所
谓均方误差损失指的是每个样本的平均平方损失，即：

式中，m表示样本的数目；y（i）表示第i个样本的真实输出结果；



表示第i个样本的模型预测结果。可见，模型表现越好，即预测结
果与真实结果越相似，均方误差损失越小。

以上形式的均方误差损失适合于回归问题，即一个样本有一个连续
输出值作为标准答案。那么如何使用均方误差损失处理分类问题呢？假
设处理的是c类分类问题，则均方误差被定义为：

式中， 表示第 i个样本的第 j 类上的真实输出结果，只有正

确的类别输出为1，其他类别输出为0； 表示模型对第i个样本的
第j类上的预测结果，如果使用Softmax函数对结果进行归一化，则表示
对该类别预测的概率。与回归问题的均方误差损失一样，模型表现越
好，其对真实类别预测的概率越趋近于1，对于错误类别预测的概率则
趋近于0，因此最终计算的损失也越小。

在处理分类问题时，交叉熵损失是一种更常用的损失函数。与均方
误差损失相比，交叉熵损失的学习速度更快。其具体定义为：

式中， 表示第 i个样本的第 j 类上的真实输出结果，只有正

确的类别输出为1，其他类别输出为0； 表示模型对第i个样本属于
第j类的预测概率。于是，最终交叉熵损失只取决于模型对正确类别预
测概率的对数值。如果模型表现越好，则预测的概率越大，由于公式右
侧前面还有一个负号，所以交叉熵损失越小（这符合直觉）。更本质地
讲，交叉熵损失函数公式右侧是对多类输出结果的分布（伯努利分布）
求极大似然中的对数似然函数（Log-Likelihood）。另外，由于交叉熵
损失只取决于正确类别的预测结果，所以其还可以进一步化简，即：



式中， 表示模型对第i个样本在正确类别t上的预测概率。所
以，交叉熵损失也被称为负对数似然损失（Negative Log
Likelihood，NLL）。之所以交叉熵损失的学习速度更高，是因为当模
型错误较大时，即对正确类别的预测结果偏小（趋近于0），负对数的
值会非常大；而当模型错误较小时，即对正确类别的预测结果偏大（趋
近于1），负对数的值会趋近于0。这种变化是呈指数形的，即当模型错
误较大时，损失函数的梯度较大，因此模型学得更快；而当模型错误较
小时，损失函数的梯度较小，此时模型学得更慢。

4.5.2 梯度下降

梯度下降（Gradient Descent，GD）是一种非常基础和常用的参数
优化方法。梯度（Gradient）即以向量的形式写出的对多元函数各个参
数求得的偏导数。如函数f （x1， x2，···， xn）对各个参数求偏

导，则梯度向量为 ，也可以记为 ∇f （x1，

x2，···， xn）。梯度的物理意义是函数值增加最快的方向，或者

说，沿着梯度的方向更加容易找到函数的极大值；反过来说，沿着梯度
相反的方向，更加容易找到函数的极小值。正是利用了梯度的这一性
质，对深度学习模型进行训练时，就可以通过梯度下降法一步步地迭代
优化一个事先定义的损失函数，即得到较小的损失函数，并获得对应的
模型参数值。梯度下降算法如下所示。

算法4.1 梯度下降算法

在算法中，循环的终止条件根据实际情况可以有多种，如给定的循
环次数、算法两次循环之间梯度变化的差小于一定的阈值和在开发集上
算法的准确率不再提升等，读者可以根据实际情况自行设定。



然而，当训练数据的规模比较大时，如果每次都遍历全部的训练数
据计算梯度，算法的运行时间会非常久。为了提高算法的运行速度，每
次可以随机采样一定规模的训练数据来估计梯度，此时被称为小批次梯
度下降（Mini-batch Gradient Descent），具体算法如下。

虽然与原始的梯度下降法相比，小批次梯度下降法每次计算的梯度
可能不那么准确，但是由于其梯度计算的速度较高，因此可以通过更多
的迭代次数弥补梯度计算不准确的问题。当小批次的数目被设为b=1
时，则被称为随机梯度下降（Stochastic Gradient Descent，SGD）。

接下来，以在4.1.6节介绍的多层感知器为例，介绍如何使用梯度
下降法获得优化的参数，解决异或问题。代码如下。

算法4.2 小批次梯度下降算法





输出结果如下：首先，输出网络的参数值，包括两个线性映射层的
权重和偏置项的值；然后，输出网络对训练数据的预测结果，即[0，
1， 1， 0]，其与原训练数据相同，说明该组参数能够正确地处理异或
问题（即线性不可分问题）。

需要注意的是，PyTorch提供了nn.CrossEntropyLoss损失函数
（类），不过与一般意义上的交叉熵损失不同，其在计算损失之前自动
进行Softmax计算，因此在网络的输出层不需要再调用Softmax层。这样
做的好处是在使用该模型预测时可以提高速度，因为没有进行Softmax
运算，直接将输出分数最高的类别作为预测结果即可。除了nn.NLLLoss
和nn.CrossEntropyLoss，PyTorch还定义了很多其他常用的损失函数，
本书不再进行介绍，感兴趣的读者请参考PyTorch的官方文档。



同样地，除了梯度下降，PyTorch还提供了其他的优化器，如
Adam、Adagrad和Adadelta等，这些优化器是对原始梯度下降法的改
进，改进思路包括动态调整学习率、对梯度累积等。它们的调用方式也
非常简单，只要在定义优化器时替换为相应的优化器类，并提供一些必
要的参数即可。关于这些优化器的定义、区别和联系，本书也不再介
绍，感兴趣的读者请参考其他深度学习类书籍。

4.6 情感分类实战

本节以句子情感极性分类为例，演示如何使用PyTorch实现上面介
绍的四种深度学习模型，即多层感知器、卷积神经网络、LSTM和
Transformer，来解决文本分类问题。为了完成此项任务，还需要编写
词表映射、词向量层、融入词向量层的多层感知器数据处理、文本表示
和模型的训练与测试等辅助功能，下面分别加以介绍。

4.6.1 词表映射

无论是使用深度学习，还是传统的统计机器学习方法处理自然语
言，首先都需要将输入的语言符号，通常为标记（Token），映射为大
于等于0、小于词表大小的整数，该整数也被称作一个标记的索引值或
下标。本书编写了一个Vocab（词表，Vocabulary）类实现标记和索引
之间的相互映射。完整的代码如下。



4.6.2 词向量层

如在本书文本表示部分（2.1节）介绍的，在使用深度学习进行自
然语言处理时，将一个词（或者标记）转换为一个低维、稠密、连续的
词向量（也称Embed-ding）是一种基本的词表示方法，通过torch.nn包
提供的Embedding层即可实现该功能。创建Embedding对象时，需要提供
两个参数，分别是num_embeddings，即词表的大小；以及
embedding_dim，即Embedding向量的维度。调用该对象实现的功能是将
输入的整数张量中每个整数（通过词表映射功能获得标记对应的整数）
映射为相应维度（embedding_dim）的张量。如下面的例子所示。



4.6.3 融入词向量层的多层感知器

在4.1.6节中介绍了基本的多层感知器实现方式，其输入为固定大
小的实数向量。如果输入为文本，即整数序列（假设已经利用词表映射
工具将文本中每个标记映射为了相应的整数），在经过多层感知器之
前，需要利用词向量层将输入的整数映射为向量。

但是，一个序列中通常含有多个词向量，那么如何将它们表示为一
个多层感知器的输入向量呢？一种方法是将n个向量拼接成一个大小
为n×d的向量，其中d表示每个词向量的大小。不过，这样做的一个问
题是最终的预测结果与标记在序列中的位置过于相关。例如，如果在一
个序列前面增加一个标记，则序列中的每个标记位置都变了，也就是它
们对应的参数都发生了变化，那么模型预测的结果可能完全不同，这样
显然不合理。在自然语言处理中，可以使用词袋（Bag-Of-Words，
BOW）模型解决该问题。词袋模型指的是在表示序列时，不考虑其中元
素的顺序，而是将其简单地看成是一个集合。于是就可以采用聚合操作
处理一个序列中的多个词向量，如求平均、求和或保留最大值等。融入
词向量层以及词袋模型的多层感知器代码如下：



最终的输出结果为每个序列属于某一类别概率的对数值。

图4-17展示了上述代码定义的词向量层、聚合层以及多层感知器模
型（没有展示激活函数）。

图4-17 词向量层、聚合层以及多层感知器模型

然而，在实际的自然语言处理任务中，一个批次里输入的文本长度
往往是不固定的，因此无法像上面的代码一样简单地用一个张量存储词
向量并求平均值。PyTorch提供了一种更灵活的解决方案，即



EmbeddingBag层。在调用Embedding-Bag层时，首先需要将不定长的序
列拼接起来，然后使用一个偏移向量（Offsets）记录每个序列的起始
位置。举个例子，假设一个批次中有4个序列，长度分别为4、5、3和
6，将这些长度值构成一个列表，并在前面加入0（第一个序列的偏移
量），构成列表offsets=[0，4，5，3，6]，然后使用语句
torch.tensor（offsets [：-1]）获得张量[0，4，5，3]，后面紧接着
执行cumsum（dim=0）方法（累加），获得新的张量[0，4，9，12]，这
就是最终每个序列起始位置的偏移向量。下面展示相应的代码示例。

使用词袋模型表示文本的一个天然缺陷是没有考虑词的顺序。为了
更好地对文本序列进行表示，还可以将词的N-gram（n元组）当作一个
标记，这样相当于考虑了词的局部顺序信息，不过同时也增加了数据的
稀疏性，因此 n 不宜过大（一般为2或3）。在此，将N-gram作为标记
的实现方法留作思考题，请读者自行实现。

4.6.4 数据处理

数据处理的第一步自然是将待处理的数据从硬盘或者其他地方加载
到程序中，此时读入的是原始文本数据，还需要经过第3章介绍的分



句、标记解析等预处理过程转换为标记序列，然后再使用词表映射工具
将每个标记映射到相应的索引值。在此，使用 NLTK 提供的句子倾向性
分析数据（sentence_polarity）作为示例，具体代码如下。

通过以上函数加载的数据不太方便直接给PyTorch使用，因此
PyTorch提供了DataLoader类（在torch.utils.data包中）。通过创建
和调用该类的对象，可以在训练和测试模型时方便地实现数据的采样、
转换和处理等功能。例如，使用下列语句创建一个DataLoader对象。

以上代码提供了四个参数，其中batch_size和shuffle较易理解，



分别为每一步使用的小批次（Mini-batch）的大小以及是否对数据进行
随机采样；而参数dataset和collate_fn则不是很直观，下面分别进行
详细的介绍。

dataset是Dataset类（在torch.utils.data包中定义）的一个对
象，用于存储数据，一般需要根据具体的数据存取需求创建Dataset类
的子类。如创建一个BowDataset子类，其中Bow是词袋的意思。具体代
码如下。

collate_fn参数指向一个函数，用于对一个批次的样本进行整理，
如将其转换为张量等。具体代码如下。

4.6.5 多层感知器模型的训练与测试



对创建的多层感知器模型，使用实际的数据进行训练与测试。



4.6.6 基于卷积神经网络的情感分类

当使用4.6.3节介绍的词袋模型表示文本时，只考虑了文本中词语
的信息，而忽视了词组信息，如句子“我不喜欢这部电影”，词袋模型
看到文本中有“喜欢”一词，则很可能将其识别为褒义。而卷积神经网
络可以提取词组信息，如将卷积核的大小设置为2，则可以提取特
征“不喜欢”等，显然这对于最终情感极性的判断至关重要。卷积神经
网络的大部分代码与多层感知器的实现一致，下面仅对其中的不同之处
加以说明。

首先是模型不同，需要从nn.Module类派生一个CNN子类。



在调用卷积神经网络时，还需要设置两个额外的超参数，分别为
filter_size=3（卷积核的大小）和num_filter=100（卷积核的个
数）。

另外，数据整理函数也需要进行一些修改。

在代码中，pad_sequence函数实现补齐（Padding）功能，使得一
个批次中全部序列长度相同（同最大长度序列），不足的默认使用0补
齐。

除了以上两处不同，其他代码与多层感知器的实现几乎一致。由此
可见，如要实现一个基于新模型的情感分类任务，只需要定义一个
nn.Module类的子类，并修改数据整理函数（collate_fn）即可，这也
是使用PyTorch等深度学习框架的优势。

4.6.7 基于循环神经网络的情感分类

4.6.3 节介绍的词袋模型还忽略了文本中词的顺序信息，因此对于
两个句子“张三打李四”和“李四打张三”，它们的表示是完全相同
的，但显然这并不合理。循环神经网络模型能更好地对序列数据进行表
示。本节以长短时记忆（LSTM）网络为例，介绍如何使用循环神经网络
模型解决情感分类问题。其中，大部分代码与前面的实现一致，下面仅
对其中的不同之处加以说明。

首先，需要从nn.Module类派生一个LSTM子类。



代码中，大部分内容在前面的章节都已介绍过，只有
pack_padded_sequence函数需要特别说明。其实现的功能是将之前经过
补齐的一个小批次序列打包成一个序列，其中每个原始序列的长度存储
在lengths中。该打包序列能够被self.lstm对象直接调用。

另一个主要不同是数据整理函数，具体代码如下。

在代码中，lengths用于存储每个序列的长度。除此之外，其他代
码与多层感知器或卷积神经网络的实现几乎一致。

4.6.8 基于Transformer的情感分类



基于Transformer实现情感分类与使用LSTM也非常相似，主要有一
处不同，即需要定义Transformer模型。具体代码如下。

在代码中，length_to_mask函数比较关键，其作用是根据批次中每
个序列长度生成Mask矩阵，以便处理长度不一致的序列，忽略掉比较短
的序列的无效部分。同时，也是TransformerEncoder中调用函数所需的
src_key_padding_mask参数。具体代码如下。



不过，由于src_key_padding_mask参数正好与length_to_mask函数
生成的结果相反（无自注意力部分为True），因此还需要取反，即
length_to_mask（lengths）==False。

另外，此处使用了位置编码（Position Encodings），所以还需要
自行实现。当然也可以使用位置嵌入（Position Embeddings），这样
只需调用 PyTorch 提供的nn.Embedding层即可。位置编码层的实现方
式如下。



4.7 词性标注实战

本节介绍如何使用前面介绍的深度学习模型，实现一个词性标注系
统，该系统也可以扩展实现其他的序列标注任务。

4.7.1 基于前馈神经网络的词性标注

首先介绍如何使用多层感知器实现词性标注。与情感分类类似，可
以将词性标注任务看作多类别文本分类问题，即取目标词的上下文词作
为输入，目标词的词性作为输出类别。由于上下文一般不取太大（如除
目标词自身外，还可以左右各取一或两个词），而且上下文中的词所处
位置对于目标词的词性判断也比较关键（如一个词在目标词的左侧还是
右侧的意义并不相同），因此一般将上下文的词向量进行拼接，构成多
层感知器的输入。这种方法又叫作基于窗口（Window）的方法。

与多层感知器类似，可以用另外一种前馈神经网络，即卷积神经网
络实现词性标注。与多层感知器不同的是，可以使用卷积神经网络对更
长的上下文进行表示。

从代码角度来讲，两种前馈神经网络实现的大部分代码与文本分类
问题（如4.6节介绍的情感分类问题）的实现是相同的，只是数据处理
稍有不同，因此在此不再赘述，读者可自行实现。

4.7.2 基于循环神经网络的词性标注

基于多层感知器的词性标注每次只能取有限的上下文作为模型的输
入，而基于循环神经网络的模型可以使用更长的上下文，因此更适合序
列标注问题。此处以NLTK提供的宾州树库（Penn Treebank）样例数据
为例，介绍如何使用LSTM循环神经网络进行词性标注。

首先加载宾州树库的词性标注语料库，代码如下。



然后，可以通过执行num_class=len（pos_vocab）获得类别数，即
词性标签的个数。接下来还需要修改collate_fn函数。

模型部分基本与文本分类中的一致，除了以下代码中注释标注的两
行。



最后，在训练阶段和预测阶段，需要使用mask来保证仅对有效的标
记求损失、对正确预测结果以及总的标记计数。即
loss=nll_loss（log_probs[mask]，targets[mask]），
acc+=（output.argmax（dim=-1）==targets）
[mask].sum（）.item（）和total+=mask.sum（）.item（）。

4.7.3 基于Transformer的词性标注

基于Transformer实现词性标注相当于将基于Transformer实现的情
感分类与基于 LSTM 实现的词性标注相融合。其中，collate_fn 函数
与 LSTM 词性标注中的相同。Transformer 层的实现与 Transformer
情感分类基本相同，只有在forward函数中需要取序列中每个输入对应
的隐含层并计算概率，而不是第1个输入的隐含层（代表整个序列）。
具体修改如下。



4.8 小结

本章主要介绍了四种在自然语言处理中常用的神经网络模型，包括
多层感知器模型、卷积神经网络、循环神经网络和以Transformer为代
表的注意力模型，并给出了每种模型的PyTorch调用代码。虽然模型各
异，但是它们的训练步骤基本是一致的，因此本章介绍了统一的模型训
练过程。最后，以情感分类和词性标注两个有代表性的任务为例，介绍
了文本分类和序列标注两类自然语言处理中的典型任务，并详细说明了
如何使用前面介绍的四种模型解决这两类任务。有了本章介绍的基础知
识，读者就可以解决一些简单的自然语言处理任务，但是如何进一步提
高系统的准确率，还需要使用本书后续章节将要介绍的预训练模型。

习题

4.1 试证明Sigmoid函数 的导数为y′=y（1−y）。

4.2 式（4-5）中，如何解决zi过大，导致 数值溢出的问题？

4.3 若去掉式 （4-11） 中的 ReLU 激活函数，该多层感知器是否
还能处理异或问题？为什么？

4.4 在使用卷积神经网络时，如何解决有用特征长度大于卷积核宽
度的问题？

4.5 在循环神经网络中，各时刻共享权重的机制有何优缺点？



4.6 在处理长距离依赖关系时，原始的循环神经网络与长短时记忆
网络（LSTM）在机制上有何本质的区别？

4.7 在Transformer中，使用绝对位置的词向量或编码有何缺点？
针对该缺点有何解决方案？

4.8 实际运行本章处理情感分类和词性标注问题的代码，并对比各
种模型的准确率，然后尝试使用多种方法提高每种模型的准确率。

[1] 更详细的信息请参考神经网络或深度学习类书籍。

[2] 无法直接使用准确率等指标评估，因为这些指标对于参数的微小变
化有可能不敏感（导数太小）或过于敏感（不可导）从而无法对参数优
化。



  第5章 

静态词向量预训练模型

文本的有序性以及词与词之间的共现信息为自然语言处理提供了天
然的自监督学习信号，使得系统无须额外人工标注也能够从文本中习得
知识。本章将介绍几种静态词向量的预训练技术，主要包括基于语言模
型和基于词共现两类方法，展示如何从未标注文本中通过自监督学习获
取单词级别的语义表示，并提供常用模型的具体代码实现。

5.1 神经网络语言模型

5.1.1 概述

本书2.2.1节介绍了语言模型的基本概念，以及经典的基于离散符
号表示的N元语言模型（N-gram Language Model）。从语言模型的角度
来看，N元语言模型存在明显的缺点。首先，模型容易受到数据稀疏的
影响，一般需要对模型进行平滑处理；其次，无法对长度超过N的上下
文依赖关系进行建模。神经网络语言模型（Neural Network Language
Model）在一定程度上克服了这些问题。一方面，通过引入词的分布式
表示，也就是词向量（2.1.3节），大大缓解了数据稀疏带来的影响；
另一方面，利用更先进的神经网络模型结构（如循环神经网络、
Transformer等），可以对长距离上下文依赖进行有效的建模。

正因为这些优异的特性，加上语言模型任务本身无须人工标注数据
的优势，神经网络语言模型几乎已经替代N元语言模型，成为现代自然
语言处理中最重要的基础技术之一；同时，也是本书重点关注的自然语
言预训练技术的核心。本节将从最基本的前馈神经网络语言模型出发，
介绍如何在大规模无标注文本数据上进行静态词向量的预训练；然后，
介绍基于循环神经网络的语言模型，通过引入更丰富的长距离历史信



息，进一步提升静态词向量的表示能力。

5.1.2 预训练任务

给定一段文本 w1w2··· wn，语言模型的基本任务是根据历史上

下文对下一时刻的词进行预测，也就是计算条件概率P （wt|w1w2···

wt−1）。为了构建语言模型，可以将其转化为以词表为类别标签集合的

分类问题，其输入为历史词序列w1w2··· wt−1（也记作w1：t−1），输

出为目标词wt。然后就可以从无标注的文本语料中构建训练数据集，并

通过优化该数据集上的分类损失（如交叉熵损失或负对数似然损失，见
4.5节）对模型进行训练。由于监督信号来自数据自身，因此这种学习
方式也被称为自监督学习（Self-supervised Learning）。

在讨论模型的具体实现方式之前，首先面临的一个问题是：如何处
理动态长度的历史词序列（模型输入）？一个直观的想法是使用词袋表
示，但是这种表示方式忽略了词的顺序信息，语义表达能力非常有限。
本节将介绍前馈神经网络语言模型（Feed-forward Neural Network
Language Model）以及循环神经网络语言模型（Recurrent Neural
Network Language Model，RNNLM），分别从数据和模型的角度解决这
一问题。

1.前馈神经网络语言模型

前馈神经网络语言模型[4]利用了传统N元语言模型中的马尔可夫假
设（Markov Assumption）——对下一个词的预测只与历史中最近的 n
−1个词相关。从形式上看：

因此，模型的输入变成了长度为n−1的定长词序列wt−n+1：t−1，模型

的任务也转化为对条件概率P （wt|wt−n+1：t−1）进行估计。

前馈神经网络由输入层、词向量层、隐含层和输出层构成。在前馈
神经网络语言模型中，词向量层首先对输入层长为n−1的历史词序列wt

−n+1：t−1进行编码，将每个词表示为一个低维的实数向量，即词向量；

然后，隐含层对词向量层进行线性变换，并使用激活函数实现非线性映



射；最后，输出层通过线性变换将隐含层向量映射至词表空间，再通过
Softmax函数得到在词表上的归一化的概率分布，如图5-1所示。

图5-1 前馈神经网络语言模型示意图

（1）输入层。模型的输入层由当前时刻t的历史词序列wt−n+1：t−1
构成，主要为离散的符号表示。在具体实现中，既可以使用每个词的独
热编码（One-Hot Encoding），也可以直接使用每个词在词表中的位置
下标。

（2）词向量层。词向量层将输入层中的每个词分别映射至一个低
维、稠密的实值特征向量。词向量层也可以理解为一个查找表（Look-
up Table），获取词向量的过程，也就是根据词的索引从查找表中找出
对应位置的向量的过程。

式中， 表示词w的d维词向量（ ， 为词表）；

表示历史序列中所有词向量拼接之后的结果。若定义词

向量矩阵为 ，那么vw即为E中与w对应的列向量，也可以表

示为E与w的独热编码ew之间的点积。

（3）隐含层。模型的隐含层对词向量层x进行线性变换与激活。令

Whid∈ 为输入层到隐含层之间的线性变换矩阵，

为偏置项，m为隐含层维度。隐含层可以表示为：



式中，f是激活函数。常用的激活函数有Sigmoid、tanh和ReLU等，
参考第4章的介绍。

（4）输出层。模型的输出层对h做线性变换，并利用Softmax函数

进行归一化，从而获得词表V空间内的概率分布。令 为

隐含层到输出层之间的线性变换矩阵，相应的偏置项为bout。输出层可
由下式计算：

综上所述，前馈神经网络语言模型的自由参数包含词向量矩阵E，

词向量层与隐含层之间的权值矩阵 Whid及偏置项 bhid，隐含层与输出

层之间的权值矩阵Wout与偏置项bout，可以记为：

θ={E, Whid, bhid, Wout, bout}

参数数量为 ，即

+m（1+（n−1）d）。由于m和d是常数，所以，模型的
自由参数数量随词表大小呈线性增长，且n的增大并不会显著增加参数
的数量。另外，词向量维度d、隐含层维度m和输入序列长度n−1等超参
数的调优需要在开发集上进行。

模型训练完成后，矩阵E则为预训练得到的静态词向量。

2.循环神经网络语言模型

在前馈神经网络语言模型中，对下一个词的预测需要回看多长的历
史是由超参数n决定的。但是，不同的句子对历史长度n的期望往往是变
化的。例如，对于句子“他 喜欢 吃 苹果”，根据“吃”容易推测
出，下画线处的词有很大概率是一种食物。因此，只需要考虑较短的历
史就足够了。而对于结构较为复杂的句子，如“他 感冒 了，于是 下
班 之后 去 了 医院”，则需要看到较长的历史（“感冒”）才能合理
地预测出目标词“医院”。



循环神经网络语言模型[5]正是为了处理这种不定长依赖而设计的一
种语言模型。循环神经网络是用来处理序列数据的一种神经网络（4.3
节），而自然语言正好满足这种序列结构性质。循环神经网络语言模型
中的每一时刻都维护一个隐含状态，该状态蕴含了当前词的所有历史信
息，且与当前词一起被作为下一时刻的输入。这个随时刻变化而不断更
新的隐含状态也被称作记忆（Memory）。

图5-2展示了循环神经网络语言模型的基本结构。

图5-2 循环神经网络语言模型的基本结构

（1）输入层。与前馈神经网络语言模型不同，由于模型不再受限
于历史上下文的长度，所以此时输入层可由完整的历史词序列构成，
即w1：t−1。

（2）词向量层。与前馈神经网络语言模型类似，输入的词序列首
先由词向量层映射至相应的词向量表示。那么，在t时刻的输入将由其
前一个词wt−1的词向量以及t−1时刻的隐含状态ht−1组成。令w0为句子起

始标记（如“＜bos＞”）， h0为初始隐含层向量（可使用0向量），

则t时刻的输入可以表示为：

（3）隐含层。隐含层的计算与前馈神经网络语言模型类似，由线
性变换与激活函数构成。

式中 。Whid实际上由两部分构成，



即Whid=[U；V]， 、 分别是 、ht−1与隐含

层之间的权值矩阵。为了体现循环神经网络的递归特性，在书写时常常
将两者区分开：

（4）输出层。最后，在输出层计算t时刻词表上的概率分布：

式中， 。

以上只是循环神经网络最基本的形式，当序列较长时，训练阶段会
存在梯度弥散（Vanishing gradient）或者梯度爆炸（Exploding
gradient）的风险。为了应对这一问题，以前的做法是在梯度反向传播
的过程中按长度进行截断（Truncated Back-propagation Through
Time），从而使得模型能够得到有效的训练，但是与此同时，也减弱了
模型对于长距离依赖的建模能力。这种做法一直持续到2015年左右，之
后被含有门控机制的循环神经网络，如长短时记忆网络（LSTM）（4.3
节）代替。

5.1.3 模型实现

1.数据准备

本章将使用NLTK中提供的Reuters语料库，该语料库被广泛用于文
本分类任务，其中包含10788篇新闻类文档，每篇文档具有1个或多个类
别。这里忽略数据中的文本类别信息，而只使用其中的文本数据进行词
向量的训练。由于在语言模型的训练过程中需要引入一些预留的标记，
例如句首标记、句尾标记，以及在构建批次（Batch）时用于补齐序列
长度的标记（Padding token）等，因此首先定义以下常量：



然后，加载Reuters语料库并构建数据集，同时建立词表，这里需
要用到第4章的Vocab类。

接下来，将分别给出前馈神经网络语言模型与循环神经网络语言模
型的Py-Torch 实现。本章所有模型的实现都将按照“数据+模型+训练
算法”的框架组织。

2.前馈神经网络语言模型

（1）数据。首先，创建前馈神经网络语言模型的数据处理类
NGramDataset。该类将实现前馈神经网络语言模型的训练数据构建与存
取功能。具体代码如下。



（2）模型。接下来，创建前馈神经网络语言模型类
FeedForwardNNLM，模型的参数主要包含词向量层、由词向量层到隐含
层，由隐含层再到输出层的线性变换参数。具体代码如下。



（3）训练。在数据与模型都构建完成后，可以对模型进行训练，
并在训练完成后导出词向量矩阵。具体实现如下。



其中，save_pretrained函数用于保存词表以及训练得到的词向
量。

将每轮迭代的模型损失绘制成曲线，如图5-3所示。可以看到，模
型在训练集上的损失随着迭代轮次的增加而不断减小。需要注意的是，
由于训练的目标是获取词向量而不是语言模型本身，所以在以上训练过
程中，并不需要以模型达到收敛状态（损失停止下降）作为训练终止条
件。在实际应用中，由于通常训练数据规模较大，在整个数据集上迭代



一定次数之后，便可以获得质量较好的词向量。

图5-3 训练过程中模型损失的变化曲线

3.循环神经网络语言模型

（1）数据。第一步仍然是创建循环神经网络语言模型的数据类
RnnlmDataset，实现训练数据的构建与存取。这里使用序列预测的方式
构建训练样本。具体的，对于句子w1w2··· wn，循环神经网络的输入

序列为＜bos＞w1w2··· wn，输出序列为w1w2··· wn＜eos＞。与

基于定长上下文的前馈神经网络语言模型不同，RNNLM的输入序列长度
是动态变化的，因此在构建批次时，需要对批次内样本进行补齐，使其
长度一致。这里使用PyTorch库的pad_sequence函数对不定长的序列进
行自动补全并构建样本批次，具体代码如下。



（2）模型。创建循环神经网络语言模型类RNNLM。循环神经网络语
言模型主要包含词向量层、循环神经网络（这里使用LSTM）和输出层。
具体代码如下。

（3）训练。模型的训练过程与前馈神经网络语言模型的训练基本
一致。由于输入输出序列可能较长，因此可以视情况调整批次大小
（batch_size）。



5.2 Word2vec词向量

5.2.1 概述

从词向量学习的角度来看，基于神经网络语言模型的预训练方法存
在一个明显的缺点，即当对t时刻词进行预测时，模型只利用了历史词
序列作为输入，而损失了与“未来”上下文之间的共现信息。本节将介
绍一类训练效率更高、表达能力更强的词向量预训练模型——Word2vec
[6]，其中包括CBOW（Continuous Bag-of-Words）模型以及Skip-gram模
型。这两个模型由Tomas Mikolov等人于2013年提出，它们不再是严格
意义上的语言模型，完全基于词与词之间的共现信息实现词向量的学
习。相应的开源工具word2vec被自然语言处理学术界和工业界广泛使
用。



1.CBOW模型

给定一段文本，CBOW模型的基本思想是根据上下文对目标词进行预

测。例如，对于文本··· ···，CBOW模
型的任务是根据一定窗口大小内的上下文Ct（若取窗口大小为5，则Ct=

{wt−2， wt−1， wt+1， wt+2}）对t时刻的词wt进行预测。与神经网络语

言模型不同，CBOW模型不考虑上下文中单词的位置或者顺序，因此模型
的输入实际上是一个“词袋”而非序列，这也是模型取名
为“Continuous Bag-of-Words”的原因。但是，这并不意味着位置信

息毫无用处。相关研究[7]表明，融入相对位置信息之后所得到的词向量
在语法相关的自然语言处理任务（如词性标注、依存句法分析）上表现
更好。这里只对其基本形式进行介绍。

CBOW模型可以表示成图5-4所示的前馈神经网络结构。与一般的前
馈神经网络相比，CBOW模型的隐含层只是执行对词向量层取平均的操
作，而没有线性变换以及非线性激活的过程。所以，也可以认为CBOW模
型是没有隐含层的，这也是CBOW模型具有高训练效率的主要原因。

图5-4 CBOW模型示意图

（1）输入层。以大小为5的上下文窗口为例，在目标词wt左右各取

2个词作为模型的输入。输入层由4个维度为词表长度 的独热表示向
量构成。

（2）词向量层。输入层中每个词的独热表示向量经由矩阵

映射至词向量空间：



wi对应的词向量即为矩阵E中相应位置的列向量，E则为由所有词向

量构成的矩阵或查找表。令Ct={wt−k，···， wt−1， wt+1，···，

wt+k}表示wt的上下文单词集合，对Ct中所有词向量取平均，就得到了wt
的上下文表示：

（3）输出层。输出层根据上下文表示对目标词进行预测（分
类），与前馈神经网络语言模型基本一致，唯一的不同在于丢弃了线性

变换的偏置项。令 E′ ∈ 为隐含层到输出层的权值矩阵，记

为E′中与wi对应的行向量，那么输出wt的概率可由下式计算：

在CBOW模型的参数中，矩阵E和E′均可作为词向量矩阵，它们分别
描述了词表中的词在作为条件上下文或目标词时的不同性质。在实际
中，通常只用E就能够满足应用需求，但是在某些任务中，对两者进行
组合得到的向量可能会取得更好的表现。

2.Skip-gram模型

绝大多数词向量学习模型本质上都是在建立词与其上下文之间的联
系。CBOW模型使用上下文窗口中词的集合作为条件输入预测目标词，
即P （wt|Ct），其中Ct={wt−k，···， wt−1， wt+1，···，

wt+k}。而Skip-gram模型在此基础之上作了进一步的简化，使用Ct中的

每个词作为独立的上下文对目标词进行预测。因此，Skip-gram模型建
立的是词与词之间的共现关系，即 P （wt|wt+j），其中 j ∈ {±1，

···，±k}。原文献[6]对于Skip-gram模型的描述是根据当前词wt预

测其上下文中的词wt+j，即P （wt+j|wt）。这两种形式是等价的，本章

采用后一种形式对Skip-gram模型进行解释与分析。



图5-5 Skip-gram模型示意图

仍然以k=2为例，Skip-gram模型可以表示为图5-5的结构，其中输
入层是当前时刻wt的独热编码，通过矩阵E投射至隐含层。此时，隐含

层向量即为wt的词向量 。根据 ，输出层利用线性变换

矩阵E′对上下文窗口内的词进行独立的预测：

式中，c∈{wt−2， wt−1， wt+1， wt+2}。

与CBOW模型类似，Skip-gram模型中的权值矩阵E与E′均可作为词
向量矩阵使用。

3.参数估计

与神经网络语言模型类似，可以通过优化分类损失对 CBOW 模型和

Skip-gram模型进行训练，需要估计的参数为θ={E， E′}。例如，给
定一段长为T 的词序列w1w2··· wT，CBOW模型的负对数似然损失函数

为：

式中，Ct={wt−k，···， wt−1， wt+1，···， wt+k}。

Skip-gram模型的负对数似然损失函数为：



5.2.2 负采样

目前介绍的词向量预训练模型可以归纳为对目标词的条件预测任
务，如根据上下文预测当前词（CBOW模型）或者根据当前词预测上下文
（Skip-gram模型）。当词表规模较大且计算资源有限时，这类模型的
训练过程会受到输出层概率归一化（Normalization）计算效率的影
响。负采样方法则提供了一种新的任务视角：给定当前词与其上下文，
最大化两者共现的概率。这样一来，问题就被简化为对于（w， c）的
二元分类问题（共现或者非共现），从而规避了大词表上的归一化计
算。令P （D=1|w， c）表示c与w共现的概率：

那么，两者不共现的概率则为：

负采样算法适用于不同的（w， c）定义形式。例如，在Skip-gram
模型中，w=wt， c= wt+j。若使用负采样方法估计，（wt， wt+j）则为

满足共现条件的一对正样本，对应的类别D=1。与此同时，对c进行若干
次负采样，得到K个不出现在wt上下文窗口内的词语，记为

。对于 ，其类别D=0。

将式（5-14）中的对数似然log P （wt+j|wt）替换为如下形式：

就得到了基于负采样方法的Skip-gram模型损失函数。其中，

根据分布 Pn（w） 采样得到，即

。假设 P1（w） 表示从训练语料中统计得到的 Unigram 分布，目前被

证明具有较好实际效果的一种负采样分布则为Pn（w）∝P1（w）3/4。

在CBOW模型中，通过对wt进行负采样，同样能够获得对应于正样本



（Ct， wt）的负样本集合，进而采用同样的方法构建损失函数并进行

参数估计。

5.2.3 模型实现

本节将给出CBOW模型与Skip-gram模型的PyTorch实现。所有实现仍
然沿用“数据+模型+训练算法”的框架。其中，CBOW与Skip-gram模型
（非负采样）的训练算法与前面介绍的神经网络语言模型基本一致，这
里不再赘述，只给出其数据类与模型类的实现方法。

1.CBOW模型

（1）数据。首先定义 CBOW 模型的数据构建与存取模块
CbowDataset。CBOW模型的输入为一定上下文窗口内的词（集合），输
出为当前词。

（2）模型。CBOW模型结构与前馈神经网络较为接近，区别在于隐
含层完全线性化，只需要对输入层向量取平均。CbowModel类的实现如
下。



2.Skip-gram模型

（1）数据。Skip-gram模型的数据输入输出与CBOW模型接近，主要
区别在于输入输出都是单个词，即在一定上下文窗口大小内共现的词
对。

（2）模型。Skip-gram模型的实现代码如下。



3.基于负采样的Skip-gram模型

（1）数据。在基于负采样的Skip-gram模型中，对于每个训练
（正）样本，需要根据某个负采样概率分布生成相应的负样本，同时需
要保证负样本不包含当前上下文窗口内的词。一种实现方式是，在构建
训练数据的过程中就完成负样本的生成，这样在训练时直接读取负样本
即可。这样做的优点是训练过程无须再进行负采样，因而效率较高；缺
点是每次迭代使用的是同样的负样本，缺乏多样性。这里采用在训练过
程中实时进行负采样的实现方式，通过数据类SGNSDataset的
collate_fn函数完成负采样。



（2）模型。在模型类中维护两个词向量层w_embeddings和
c_embeddings，分别用于词与上下文的向量表示。



（3）训练。首先，编写函数从训练语料中统计Unigram出现次数并
计算概率分布。

接下来是具体的训练过程，这里根据式（5-17）来计算总体损失函

数，与前文神经网络语言模型直接使用负对数似然损失有所区别。[1]





5.3 GloVe词向量

5.3.1 概述

无论是基于神经网络语言模型还是Word2vec的词向量预训练方法，
本质上都是利用文本中词与词在局部上下文中的共现信息作为自监督学
习信号。除此之外，另一类常用于估计词向量的方法是基于矩阵分解的
方法，例如潜在语义分析（2.1节）等。这类方法首先对语料进行统计
分析，并获得含有全局统计信息的“词--上下文”共现矩阵，然后利用
奇异值分解（Singular Value Decomposition，SVD）对该矩阵进行降
维，进而得到词的低维表示。然而，传统的矩阵分解方法得到的词向量
不具备良好的几何性质，因此，文献[8]结合词向量以及矩阵分解的思
想，提出了GloVe（Global Vectors for Word Representation）模
型。

5.3.2 预训练任务

GloVe模型的基本思想是利用词向量对“词--上下文”共现矩阵进
行预测（或者回归），从而实现隐式的矩阵分解。首先，构建共现矩
阵M，其中Mw，c表示词w与上下文c在受限窗口大小内的共现次数。GloVe

模型在构建M 的过程中进一步考虑了w与c的距离，认为距离较远的
（w， c）对于全局共现次数的贡献较小，因此采用以下基于共现距离
进行加权的计算方式：

式中，di（w， c）表示在第i次共现发生时，w与c之间的距离。

在获得矩阵M之后，利用词与上下文向量表示对M中的元素（取对
数）进行回归计算。具体形式为：

式中，vw、 分别表示w与c的向量表示；bw与 分别表示相应的



偏置项。对以上回归问题进行求解，即可获得词与上下文的向量表示。

5.3.3 参数估计

令θ={E， E′， b， b′}表示GloVe模型中所有可学习的参数，

表示训练语料中所有共现的（w， c）样本集合。GloVe模型通过优化
以下加权回归损失函数进行学习：

式中，f （Mw，c）表示每一个（w， c）样本的权重。样本的权重

与其共现次数相关。首先，共现次数很少的样本通常被认为含有较大的
噪声，所蕴含的有用信息相对于频繁共现的样本也更少，因此希望给予
较低的权重；其次，对于高频共现的样本，也需要避免给予过高的权
重。因此，GloVe采用了以下的分段函数进行加权：

当Mw，c不超过某个阈值（mmax）时，f （Mw，c）的值随Mw，c递增且

小于或等于1，其增长速率由α控制；而当Mw，c＞mmax时，f （Mw，c）恒

为1。

5.3.4 模型实现

（1）数据。构建数据处理模块，该模块需要完成共现矩阵的构建
与存取，具体实现如下。



（2）模型。GloVe模型与基于负采样的Skip-gram模型类似，唯一
的区别在于增加了两个偏置向量，具体代码如下。



（3）训练。在训练过程中，根据式（5-20）计算回归损失函数。
具体代码如下。



5.4 评价与应用



对于不同的学习方法得到的词向量，通常可以根据其对词义相关性
或者类比推理性的表达能力进行评价，这种方式属于内部任务评价方法
（Intrinsic Evalua-tion）。在实际任务中，则需要根据下游任务的
性能指标判断，也称为外部任务评价方法（Extrinsic Evaluation）。
这里首先介绍两种常用的内部任务评价方法，然后以情感分类任务为
例，介绍如何将预训练词向量应用于下游任务。

5.4.1 词义相关性

对词义相关性的度量是词向量的重要性质之一。可以根据词向量对
词义相关性的表达能力衡量词向量的好坏。

利用词向量低维、稠密、连续的特性，可以方便地度量任意两个词
之间的相关性。例如，给定词wa与wb，它们在词向量空间内的余弦相似

度就可以作为其词义相关性的度量：

基于该相关性度量，定义以下函数实现K近邻（K-Nearest
Neighbors，KNN）查询。

利用该函数，可实现在词向量空间内进行近义词检索。



这里使用斯坦福大学发布的GloVe预训练词向量，该词向量是在大
规模文本数据上使用GloVe算法训练得到，也是目前被广泛使用的预训
练词向量之一。下载好词向量之后，使用 load_pretrained 函数进行
加载，并返回词表与词向量对象。

在GloVe词向量空间内以“august”“good”为查询词进行近义词
检索，可以得到以下结果。

可见，词向量准确地反映了词义的相关性。

与此同时，还可以利用含有词义相关性的人工标注作为黄金标准，



对词向量进行定量的评价。以目前常用的评价数据集——WordSim353为
例：该数据集包含353个英文词对，每个词对由16位标注者给出[0，10]
区间内的一个数值，最后取平均值作为该词对的词义相似度，如表5-1
所示。由词向量计算得到的相似度值与人工标注值之间的相关系数（如
Spearman或者Pearson相关系数）即可作为词向量评价的标准。

表5-1 WordSim353数据集中的词义相似度标注示例

5.4.2 类比性

词的类比性（Word analogy）是对于词向量的另一种常用的内部任
务评价方法。对词向量在向量空间内的分布进行分析可以发现，对于语
法或者语义关系相同的两个词对（wa， wb）与（wc， wd），它们的词

向量在一定程度上满足： ≈ 的几何性质。例如，
在图5-6的示例中有以下类比关系：

图5-6 词向量空间内的语义和语法类比推理性质示例

这两个例子分别从词义和词法两个角度展示了词向量的类比性。根
据这一性质，可以进行词与词之间的关系推理，从而回答诸如“wa之于

wb，相当于wc之于？”的问题。对于下画线处的词，可以利用下式在词

向量空间内进行搜索得到：



利用前文的knn函数，可以方便地实现这一功能。具体代码如下：

一般来说，词向量在以上评价方法中的表现与训练数据的来源及规
模、词向量的维度等因素密切相关。在实际应用中，需要根据词向量在
具体任务中的表现来选择。

5.4.3 应用

预训练词向量可以作为词的特征表示直接用于下游任务，也可以作
为模型参数在下游任务的训练过程中进行精调（Fine-tuning）。在通
常情况下，两种方式都能够有效地提升模型的泛化能力。

第4章介绍了如何构建不同类型的神经网络模型，如多层感知器、
循环神经网络等，来完成情感分析以及词性标注等自然语言处理任务。
这些模型均使用了随机初始化的词向量层实现由离散词表示到连续向量
表示的转换。为了利用已预训练好的词向量，只需要对词向量层的初始
化过程进行简单的修改。以基于多层感知器模型的情感分类模型为例，
具体代码如下。



由于下游任务训练数据的词表与预训练词向量的词表通常有所不
同，因此，这里只初始化在预训练词表中存在的词，对于其他词则仍然
保留其随机初始化向量，并在后续训练过程中精调。此外，读者也可以
尝试其他的初始化方式。例如，可以根据预训练词向量确定词表，而对
于其他词统一使用“＜unk＞”标记代替。在目标任务的训练过程中，
有的情况下“冻结”词向量参数会取得更好的效果（可以通过设置
requires_gradient=False来实现）。此时词向量被作为特征使用。

对于其他模型（如LSTM、Transformer等）的修改与之类似，请读
者自行实现。

为了观察使用预训练词向量进行初始化带来的变化，在此沿用第4
章采用的NLTK sentence_polarity数据进行实验，这里使用正负各1，
000个样本。图5-7展示了其与使用随机初始化词向量层的模型在训练过
程中损失函数的变化曲线。通过两者的对比可以看出，预训练词向量能
够显著加快模型训练时的收敛速度。在10轮迭代之后，模型在测试集上
的准确率为70%，相比于使用随机初始化词向量层的模型（67%），也取
得了较为显著的提升。



图5-7 两种模型训练过程中模型损失的变化曲线

5.5 小结

本章主要介绍了静态词向量的预训练技术，包括基于神经网络语言
模型以及基于词共现两类方法。同时也提供了主要模型的代码实现，供
读者尝试。另外，本章介绍了基于词义相关性和词类比性两种对于静态
词向量的内部任务评价方法，并以情感分类为例，介绍了如何使用预训
练词向量作为特征提升下游任务的性能。

习题

5.1 实际运行本章提供的不同词向量学习模型代码，观察不同超参
数的设置对于词向量性能的影响。

5.2 在基于负采样的Skip-gram模型中，试分析不同上下文窗口大
小对于词向量的影响，分别在情感分类以及词性标注任务上进行验证。

5.3 下载预训练GloVe词向量，利用t-SNE对其进行可视化分析。

5.4 分别从词表示以及实际应用两个角度分析静态词向量的优缺
点。并针对其缺点，思考并提出一种合理的解决方案。

5.5 提出一种针对低频词的词向量学习改进方案。

5.6 将预训练词向量用于目标任务时，在什么情形下，“冻结”词
向量比精调词向量更合理？在情感分类任务上进行验证。

[1] 另一种实现方式是事先构建好所有的正样本与负样本集合，并以二



元分类模型的方式进行训练。尽管这种实现方式更为简单，但是其负样
本的多样性相比于本节所采用的实时采样方法要低。



  第6章 

动态词向量预训练模型

近年来，动态词向量（或上下文相关的词向量）逐渐成为词表示研
究与应用的新热点。它相比于静态词向量有什么具体的优势？其动态性
又是如何获得的？本章首先介绍动态词向量的提出动机与基本思想；然
后重点介绍以ELMo模型为代表的动态词向量学习方法，并给出相应的代
码实现；最后，介绍动态词向量在自然语言处理实际任务中的应用。

6.1 词向量——从静态到动态

如前文所述，词向量的学习主要利用了语料库中词与词之间的共现
信息，其背后的核心思想是分布式语义假设。在目前介绍的静态词向量
学习算法中，无论是基于局部上下文预测的 Word2vec 算法，还是基于
显式全局共现信息的 GloVe回归算法，其本质都是将一个词在整个语料
库中的共现上下文信息聚合至该词的向量表示中。因此，在一个给定的
语料库上训练得到的词向量可以认为是“静态”的，即：对于任意一个
词，其向量表示是恒定的，不随其上下文的变化而变化。

然而，在自然语言中，同一个词在不同的上下文或语境下可能呈现
出多种不同的词义、语法性质或者属性。以“下场”一词为例，其在句
子“他 亲自 下场 参加 比赛”和“竟 落得 这样 的 下场”中的词义
截然不同，而且具有不同的词性（前者为动词，后者为名词）。一词多
义是自然语言中普遍存在的语言现象，也是自然语言在发展变化过程中
的自然结果。在静态词向量表示中，由于词的所有上下文信息都被压
缩、聚合至单个向量表示内，因此难以刻画一个词在不同上下文或不同
语境下的不同词义信息。

为了解决这一问题，研究人员提出了上下文相关的词向量
（Contextualized Word Embedding）。顾名思义，在这种表示方法



中，一个词的向量将由其当前所在的上下文计算获得，因此是随上下文
而动态变化的。在本书中，也将其称为动态词向量（Dynamic Word
Embedding）。在动态词向量表示下，前面例子中的“下场”在两句话
中将分别得到两个不同的词向量表示。需要注意的是，动态词向量仍然
严格满足分布式语义假设。

在一个文本序列中，每个词的动态词向量实际上是对该词的上下文
进行语义组合后的结果。而对于文本这种序列数据而言，循环神经网络
恰好提供了一种有效的语义组合方式。本书的第4章与第5章分别介绍了
循环神经网络，以及在序列数据建模中的应用。在这些应用中，既有利
用循环神经网络最后时刻的隐含层表示作为整个文本片段（句子）的向
量表示，以进行文本分类；也有利用每一时刻的隐含层表示进行序列标
注（如词性标注）。这意味着，循环神经网络模型中每一时刻（位置）
的隐含层表示恰好可以作为该时刻词在当前上下文条件下的向量表示，
即动态词向量。同时，循环神经网络可以通过语言模型任务进行自监督
学习，而无须任何额外的数据标注。基于该思想，Matthew Peters等人
在文献[9]中提出语言模型增强的序列标注模型TagLM。该模型利用预训
练循环神经网络语言模型的隐含层表示作为额外的词特征，显著地提升
了序列标注任务的性能。随后，他们进一步完善了这项研究，并提出深
度上下文相关词向量的思想以及预训练模型ELMo（Embeddings from

Language Models）[10]。在包括自动问答、文本蕴含和信息抽取等多项
自然语言处理任务上的实验表明，ELMo能够直接有效地为当时最好的模
型带来显著的提升。同时，ELMo模型还被推广至多语言场景，在CoNLL-
2018国际多语言通用依存句法分析的评测任务中取得了优异的表现
[11]。

在特定的条件下，也可以利用更丰富的监督信号训练循环神经网
络。例如，当存在一定规模的双语平行语料时，可以利用基于序列到序
列的机器翻译方法训练循环神经网络。在训练完成后，便可以利用翻译
模型的编码器对源语言进行编码以获取动态词向量。文献[12]提出的
CoVe模型采用了这种预训练方法。但是，双语平行语料的获取难度相比
单语数据更高，且覆盖的领域也相对有限，因此通用性有所欠缺。

本章将主要介绍基于语言模型的动态词向量预训练方法，以及在自
然语言处理任务中的典型应用。



6.2 基于语言模型的动态词向量预训练

6.2.1 双向语言模型

对于给定的一段输入文本w1w2··· wn，双向语言模型从前向（从

左到右）和后向（从右到左）两个方向同时建立语言模型。这样做的好
处在于，对于文本中任一时刻的词wt，可以同时获得其分别基于左侧上

下文信息和右侧上下文信息的表示。

具体地，模型首先对每个词单独编码。这一过程是上下文无关的，
主要利用了词内部的字符序列信息。基于编码后的词表示序列，模型使
用两个不同方向的多层长短时记忆网络（LSTM）分别计算每一时刻词的
前向、后向隐含层表示，也就是上下文相关的词向量表示。利用该表
示，模型预测每一时刻的目标词。对于前向语言模型，t时刻的目标词
是wt+1；对于后向语言模型，目标词是wt−1。

（1）输入表示层。ELMo模型采用基于字符组合的神经网络表示输
入文本中的每个词，目的是减小未登录词（Out-Of-Vocabulary，OOV）
对模型的影响。图6-1展示了输入表示层的基本结构。

首先，字符向量层将输入层中的每个字符（含额外添加的起止符）
转换为向量表示。假设wt由字符序列c1c2··· cl构成，对于其中的每

个字符ci，可以表示为：

式中， 表示字符向量矩阵； 表示所有字

符集合；dchar表示字符向量维度； 表示字符ci的独热编码。

记wt中所有字符向量组成的矩阵为 ，即

。接下来，利用卷积神经网络对字符级向量表
示序列进行语义组合（Semantic Com-position）。这里使用一维卷积



神经网络，将字符向量的维度dchar作为输入通道的个数，记为Nin，输

出向量的维度作为输出通道的个数，记为Nout。另外，通过使用多个不
同大小（宽度）的卷积核，可以利用不同粒度的字符级上下文信息，并
得到相应的隐含层向量表示，这些隐含层向量的维度由每个卷积核对应
的输出通道个数确定。拼接这些向量，就得到了每一位置的卷积输出。
然后，池化操作隐含层所有位置的输出向量，就可以得到对于词wt的定

长向量表示，记为ft。假设使用宽度分别为{1，2，3，4，5，6，7}的7

个一维卷积核，对应的输出通道数量分别为{32，32，64，128，256，
512，1024}，那么输出向量ft的维度为2048。关于一维卷积神经网络更

详细的解释，可以参考本书4.2节。

图6-1 基于字符卷积神经网络和Highway神经网络的输入表示层示意图

接着，模型使用两层 Highway 神经网络对卷积神经网络输出作进
一步变换，得到最终的词向量表示 xt。Highway 神经网络在输入与输

出之间直接建立“通道”，使得输出层可以直接将梯度回传至输入层，
从而避免因网络层数过多而带来的梯度爆炸或弥散的问题。单层
Highway神经网络的具体计算方式如下：

式中，g为门控向量，其以ft为输入，经线性变换后通过Sigmoid函

数（σ）计算得到：



式中，Wg与bg为门控网络中的线性变换矩阵与偏置向量。可见，
Highway神经网络的输出实际上是输入层与隐含层的线性插值结果。当
然，通常模型的结构是根据实验调整和确定的，读者也可以自行尝试其
他的模型结构。例如，可以使用字符级双向LSTM网络编码单词内字符串
序列。

接下来，在由上述过程得到的上下文无关词向量的基础之上，利用
双向语言模型分别编码前向与后向上下文信息，从而得到每一时刻的动
态词向量表示。

（2）前向语言模型。在前向语言模型中，对于任一时刻目标词的
预测，都只依赖于该时刻左侧的上下文信息或者历史。这里使用基于多
层堆叠的长短时记忆网络语言模型（见5.1节）。将模型中多层堆叠

LSTM的参数记为 ，Softmax输出层参数记为θout。则模型可以表
示为：

（3）后向语言模型。与前向语言模型相反，后向语言模型只考虑
某一时刻右侧的上下文信息。可以表示为：

式中， 表示后向LSTM网络编码部分的参数。

需要注意的是，前向语言模型与后向语言模型共享了输出层参数

（θout）。通过最大化前向语言模型与后向语言模型的似然函数，就可
以完成ELMo模型的预训练过程。

6.2.2 ELMo词向量

在双向语言模型预训练完成后，模型的编码部分（包括输入表示层
以及多层堆叠LSTM）便可以用来计算任意文本的动态词向量表示。最自



然的做法是使用两个 LSTM 的最后一层隐含层输出作为词的动态向量表
示。然而，在 ELMo 模型中，不同层次的隐含层向量蕴含了不同层次或
粒度的文本信息。例如，越接近顶层的LSTM隐含层表示通常编码了更多
的语义信息，而接近底层的隐含层表示（包括输入表示x）更偏重于词
法、句法信息。不同的下游任务，对词表示的需求程度有所不同。例
如，对于阅读理解、自动问答这类任务，对语义信息的需求较高；而对
于命名实体识别等任务，词法、句法信息更重要。因此，ELMo采取对不
同层次的向量表示进行加权平均的机制，为不同的下游任务提供更多的

组合自由度。令 表示wt的所有中间层状态向量表示构成的集合，

则：

式中， 表示两个多层堆叠LSTM中每一层的前
向、后向隐含层输出拼接后得到的向量。

令ht，0=xt，则ELMo词向量可表示为：

式中，Ψ={stask，γtask}为计算ELMo向量所需的额外参数；stask表
示每个向量的权重，反映每一层向量对于目标任务的重要性，可由一组
参数根据Softmax函数归一化计算得到，该权重向量可在下游任务的训

练过程中学习；γtask系数同样与下游任务相关，当ELMo向量与其他向
量共同作用时，可以适当地缩放ELMo向量。将ELMo向量作为词特征用于
下游任务时，编码器的参数将被“冻结”，不参与更新。

综上所述，ELMo向量表示具有以下三个特点。

• 动态（上下文相关）：词的ELMo向量表示由其当前上下文决定；

• 健壮（Robust）：ELMo向量表示使用字符级输入，对于未登录词
具有强健壮性；

• 层次：ELMo词向量由深度预训练模型中各个层次的向量表示进行



组合，为下游任务提供了较大的使用自由度。

图6-2展示了ELMo模型的整体结构。

图6-2 ELMo模型示意图

6.2.3 模型实现

（1）数据准备。读取文本数据。假设已经收集好了一定规模的生
文本数据，并使用第3章介绍的文本预处理方法完成了数据清洗与分词
等预处理工作。得到的语料文件中每一行是一段独立的文本，且词与词
之间由空格符分隔。由于模型用到了字符级输入，因此需要同时构建词
级别与字符级别的训练语料，并建立相应的词表。





接下来，构建用于双向语言模型的数据类BiLMDataset。该类需要
完成两个重要的功能，分别为：

• 补齐（Padding）字符序列以及词序列，从而构建训练批次
（Mini-batch）；

• 获取双向语言模型的输入、输出。对于输入序列＜bos
＞w1w2··· wn＜eos＞，前向语言模型的目标输出序列为 w1w2···

＜eos＞＜pad＞，即输入序列左移一位；后向语言模型输出序列为＜
pad＞＜bos＞w1··· wn，即输入序列右移一位；其中在＜pad＞处不

进行预测。

这里仍然通过collate_fn函数完成这两个功能。具体实现如下。





（2）双向语言模型。ELMo模型的核心是双向语言模型，其编码器
部分主要包括基于字符的输入表示层以及前向、后向LSTM层。以下对各
个组件分别进行实现。

输入表示层依赖的Highway神经网络由多个非线性层构成，每一层
的表示是当前隐含层输出层与输入层线性插值后的结果，插值系数根据
门控网络确定。

基于字符卷积的词表示层ConvTokenEmbedder代码如下。





接下来，创建双向LSTM编码器，获得序列每一时刻、每一层的前向
表示和后向表示。虽然通过PyTorch内建的LSTM类可以方便地构建多层
的双向LSTM网络，但是目前的接口不支持提取中间层的表示。因此，这



里通过手动堆叠多个单层LSTM来实现。



基于以上组件，就可以快速构建出完整的双向语言模型。由于模型
的超参数较多，为了简化传参过程，这里将超参数通过一系列“键--



值”对构成的字典结构（configs）进行组织。例如：

然后，创建双向语言模型，具体代码如下。



（3）训练。在数据、模型组件构建完成后，下一步是使用实际数
据对模型进行训练。具体代码如下。





训练过程将输出每一次迭代后的前向语言模型的困惑度值。在训练
完成后，便可以利用双向语言模型的编码器编码输入文本并获取动态词
向量。为方便使用，可以额外封装其编码器部分，以供下游任务调用。



另外，还可以为ELMo类编写丰富的接口，以编码单个句子、批次或
者文档。同时，关于模型结构的选择，除了LSTM，也可以使用其他神经
网络结构，例如Transformer等。尽管模型较为简单、易于实现，但是
为了获得高质量的预训练模型，通常需要较大规模的高质量数据以及精
细的超参数选择。在算力受限的情况下，可以直接使用已经开源或开放

使用的ELMo预训练模型，例如由AI2发布的AllenNLP工具包[13]，以及由
哈工大社会计算与信息检索研究中心（HIT-SCIR）发布的多语言ELMo预

训练模型[11]等。

以AllenNLP（v1.3.0版本）为例，调用ELMo预训练模型的方式如
下。

Elmo类是由nn.Module派生的一个子类，其forward函数的输入是已
分词的句子列表，输出是 ELMo 向量与掩码矩阵。ELMo 向量对应的组
合参数可以根据下游任务训练。可以看到，Elmo 类的四个关键参数分
别为超参数配置文件options_file、预训练模型权重文件
weight_file、输出的ELMo向量数目num_output_representations和
dropout概率。需要注意的是，将ELMo应用于下游任务模型时，可以在



模型的不同位置同时引入ELMo向量特征，例如输入层或隐含层。而应用

于不同位置的ELMo向量可使用不同的组合系数（stask）。
num_output_representations参数可用于控制输出的ELMo向量的数目，
即不同组合方式的数目。关于AllenNLP ELMo接口的其他参数，请读者
自行参考其官方源代码及文档。

对于已分词的文本，首先使用batch_to_ids函数将文本转换为id表
示，然后使用elmo对象编码，示例代码如下。

输出结果包含由输入句子的ELMo向量表示组成的张量（列表），在
示例中，其大小为2×3×1024（分别为批次大小、最大序列长度和向量
维度）；以及输入文本补齐后对应的掩码矩阵。

6.2.4 应用与评价

与静态词向量类似，动态词向量最简单、直接的应用是作为输入特
征供目标任务使用，而无须改变目标任务已有的模型结构。这种“即插
即用”的特点也是ELMo模型广受欢迎的原因之一。从词表示学习的角度
来看，由于动态词向量编码了词的上下文信息，因此具有一定的词义消
歧能力。本小节首先介绍动态词向量在下游任务中的应用，然后分析其
词义表示能力。



1.作为下游任务特征

本节仍然以文本分类为例，展示如何在下游任务中应用ELMo词向量
特征。利用ELMo即插即用的特点，可以很方便地在既有模型中使用
ELMo。例如，可以简单地修改5.4.3节的多层感知器文本分类模型，使
其利用ELMo动态词向量来现文本分类，具体代码如下。

以上示例代码将原有的静态词向量（GloVe）特征完全替换为动态
词向量特征，这也是一种最简单的使用ELMo向量的方法。在实际应用
中，根据目标任务、领域或数据的不同，可以采用不同的方式灵活地使
用ELMo向量特征。例如，可以在模型的底层将ELMo向量与静态词向量一
并作为模型的输入（[xk；ELMok]）；或在模型的顶层与最接近输出层

的隐含层表示相结合作为分类器（Softmax 层）的输入（[hk；

ELMok]）。

正如前文所述，越接近底层（输入层）的隐含层表示更侧重于词
法、句法等较为浅层的信息；而越接近顶层（输出层）的隐含层表示更
多地编码语义层面的信息。文献[10]验证了这一假设：对于更依赖词法



特征的词性标注任务，使用ELMo第一层LSTM特征优于第二层；而对于词
义消歧任务，第二层LSTM特征显著优于第一层。

2.上下文相关的词义相似性检索

动态词向量被提出的一个主要动机是为了弥补静态词向量对于一词
多义现象表达能力的不足。那么，根据ELMo词向量的“上下文相关”特
性，其应当具备一定限度上的词义消歧能力。为了验证这一点，最直接
的方法是对比ELMo与静态词向量作为词特征在词义消歧任务上的表现。
同时，也可以定性地观察与分析多义词在词向量空间内的近邻分布。

文献[10]的实验表明，ELMo向量在词义消歧任务和近邻分析上都有
较好的表现。例如，表6-1给出了英文“play”一词的近邻搜索结果。
由于ELMo是上下文相关的词向量，因此其近邻也是含上下文信息的。可
以看出，在GloVe词向量空间内的近邻词具有多种不同的词性，且主要
为与“运动”“游戏”相关的词。而利用ELMo向量，可以有效地检索出
与查询中“play”词性、词义一致的上下文。

表6-1 词义相似性检索：静态词向量与动态词向量对比[10]

6.3 小结

本章介绍了动态词向量的主要思想和提出动机，并以ELMo为例详细
介绍了其原理和详细的代码实现。ELMo模型的提出使得多项自然语言处
理任务的性能在不改变模型的基础上得到了显著的提升，这极大地增加
了人们对预训练模型的信心，同时也启发了一种新的自然语言处理范式
——基于自监督学习的预训练+基于有监督学习的精调范式。在第7章，
将对这种新的范式展开详细的介绍。



习题

6.1 分别从词表示和语义组合的角度阐述动态词向量的特点，以及
其相比于静态词向量的优势。

6.2 以英文中常用的多义词“bank”为例，使用AllenNLP提供的
ELMo模型抽取其在不同句子中的词向量，并使用t-SNE进行可视化分
析。

6.3 实现基于ELMo的词性标注，并对比ELMo不同层的特征对于模型
性能的影响。

6.4 使用Transformer结构实现ELMo模型中的前向、后向语言模
型，并分别从语言模型困惑度和下游任务性能两个方面与LSTM语言模型
对比分析。

6.5 为了训练中文的ELMo模型，需要对模型结构做哪些调整？

6.6 除了以特征形式应用于下游任务，动态词向量还有哪些潜在的
应用场景？



  第7章 

预训练语言模型

第6章介绍的动态词向量方法CoVe和ELMo将词表示从静态转变到动
态，同时也在多个自然语言处理任务中显著地提升了性能。随后，以
GPT和BERT为代表的基于大规模文本训练出的预训练语言模型（Pre-
trained Language Model，PLM）已成为目前主流的文本表示模型。本
章首先介绍预训练语言模型的特点及主要组成部分，让读者对预训练语
言模型有一个基本的认识。然后介绍以GPT为代表的基于自回归的预训
练语言模型。接着介绍基于自编码的预训练语言模型，并以经典的BERT
为例，详细介绍其建模方法。最后，以多个典型的自然语言处理任务为
例，结合相关代码介绍预训练语言模型在下游任务中的应用方法。

7.1 概述

预训练模型并不是自然语言处理领域的“首创”技术。在计算机视

觉（Com-puter Vision，CV）领域，以ImageNet[14]为代表的大规模图
像数据为图像识别、图像分割等任务提供了良好的数据基础。因此，在
计算机视觉领域，通常会使用Ima-geNet进行一次预训练，让模型从海
量图像中充分学习如何从图像中提取特征。然后，会根据具体的目标任
务，使用相应的领域数据精调，使模型进一步“靠近”目标任务的应用
场景，起到领域适配和任务适配的作用。这好比人们在小学、初中和高
中阶段会学习数学、语文、物理、化学和地理等基础知识，夯实基本功
并构建基本的知识体系（预训练阶段）。而当人们步入大学后，将根据
选择的专业（目标任务）学习某一领域更深层次的知识（精调阶段）。
从以上介绍中可以看出，“预训练+精调”模式在自然语言处理领域的
兴起并非偶然现象。

由于自然语言处理的核心在于如何更好地建模语言，所以在自然语



言处理领域中，预训练模型通常指代的是预训练语言模型。广义上的预
训练语言模型可以泛指提前经过大规模数据训练的语言模型，包括早期
的以Word2vec、GloVe为代表的静态词向量模型，以及基于上下文建模
的CoVe、ELMo等动态词向量模型。在2018年，以GPT和BERT为代表的基
于深层Transformer的表示模型出现后，预训练语言模型这个词才真正
被大家广泛熟知。因此，目前在自然语言处理领域中提到的预训练语言
模型大多指此类模型。预训练语言模型的出现使得自然语言处理进入新
的时代，也被认为是近些年来自然语言处理领域中的里程碑事件。

相比传统的文本表示模型，预训练语言模型具有“三大”特点——
大数据、大模型和大算力。接下来介绍这“三大”特点代表的具体含
义。

7.1.1 大数据

“工欲善其事，必先利其器。”要想学习更加丰富的文本语义表
示，就需要获取文本在不同上下文中出现的情况，因此大规模的文本数
据是必不可少的。获取足够多的大规模文本数据是训练一个好的预训练
语言模型的开始。因此，预训练数据需要讲究“保质”和“保量”。

•“保质”是希望预训练语料的质量要尽可能高，避免混入过多的
低质量语料。这与训练普通的自然语言处理模型的标准基本是一致的；

•“保量”是希望预训练语料的规模要尽可能大，从而获取更丰富
的上下文信息。

在实际情况中，预训练数据往往来源不同。精细化地预处理所有不
同来源的数据是非常困难的。因此，在预训练数据的准备过程中，通常
不会进行非常精细化地处理，仅会预处理语料的共性问题。同时，通过
增大语料规模进一步稀释低质量语料的比重，从而降低质量较差的语料
对预训练过程带来的负面影响。当然，预训练语料的质量越高，训练出
来的预训练语言模型的质量也相对更好，这需要在数据处理投入和数据
质量之间做出权衡。

7.1.2 大模型

在有了大数据后，就需要有一个足以容纳这些数据的模型。数据规



模和模型规模在一定程度上是正相关的。当在小数据上训练模型时，通
常模型的规模不会太大，以避免出现过拟合现象。而当在大数据上训练
模型时，如果不增大模型规模，可能会造成新的知识无法存放的情况，
从而无法完全涵盖大数据中丰富的语义信息。因此，需要一个容量足够
大的模型来学习和存放大数据中的各种特征。在机器学习中，“容量
大”通常指的是模型的“参数量大”。那么，如何设计这样一个参数量
较大的模型呢？这里主要考虑以下两个方面。

• 模型需要具有较高的并行程度，以弥补大模型带来的训练速度下
降的问题；

• 模型能够捕获并构建上下文信息，以充分挖掘大数据文本中丰富
的语义信息。

综合以上两点条件，基于Transformer的神经网络模型成为目前构
建预训练语言模型的最佳选择。首先，Transformer模型具有较高的并
行程度。Transformer核心部分的多头自注意力机制（Multi-head

Self-attention）[15]不依赖于顺序建模，因此可以快速地并行处理。
与此相反，传统的神经网络语言模型通常基于循环神经网络（RNN），
而RNN需要按照序列顺序处理，并行化程度较低。其次，Transformer中
的多头自注意力机制能够有效地捕获不同词之间的关联程度，并且能够
通过多头机制从不同维度刻画这种关联程度，使得模型能够得到更加精
准的计算结果。因此，主流的预训练语言模型无一例外都使用了
Transformer作为模型的主体结构。

7.1.3 大算力

即使拥有了大数据和大模型，但如果没有与之相匹配的大算力，预
训练语言模型也很难得以实现。为了训练预训练语言模型，除了大家熟
知的深度学习计算设备——图形处理单元（Graphics Processing
Unit，GPU），还有后起之秀——张量处理单元（Tensor Processing
Unit，TPU）。下面就这两种常见的深度学习计算设备进行简单的介
绍。

1.图形处理单元

图形处理单元（GPU，俗称显卡）是大家最熟悉的计算设备之一。



早期，GPU主要用来处理计算机图形，是连接计算机主机和显示终端
（如显示器）的纽带。而随着GPU核心的不断升级，在其计算能力和计
算速度得到大幅提升后，不仅可以作为常规的图形处理设备，同时也可
以成为深度学习领域的计算设备。

那么，为什么不使用中央处理器（Central Processing Unit，
CPU）来运行深度学习任务呢？因为CPU和GPU擅长的任务类型是不同
的。CPU擅长处理串行运算以及逻辑控制和跳转，而GPU更擅长大规模并
行运算。由于深度学习中经常涉及大量的矩阵或张量之间的计算，并且
这些计算是可以并行完成的，所以特别适合用GPU处理。

目前，在深度学习领域应用范围最广的GPU品牌是英伟达
（NVIDIA）。英伟达生产的GPU依靠与之匹配的统一计算设备架构
（Compute Unified Device Archi-tecture，CUDA）能够更好地处理复
杂的计算问题，同时深度优化多种深度学习基本运算指令。大家熟知的
PyTorch、TensorFlow等主流的深度学习框架均提供了基于CUDA的GPU运
算支持，并提供了更高层、更抽象的调用方式，使得用户可以更方便地
编写深度学习程序。

目前广受欢迎的深度学习设备是英伟达Volta系列硬件，其中最为
人熟知的型号是V100，其在深度学习框架下的浮点运算性能达到了125
TFLOPS（以NVLink版为例）。V100的人工智能推理吞吐量比CPU高出20
倍以上，并且在高性能计算（High Performance Computing，HPC）方

面相比CPU高出100倍以上[1]。

2.张量处理单元

张量处理单元（TPU）[16]是谷歌公司近年定制开发的专用集成电路
（Appli-cation Specific Integrated Circuit，ASIC），专门用于加
快机器学习任务的训练，但在早期并没有像GPU那样被广为熟知。研究
人员能够使用TensorFlow在TPU加速器硬件上快速地完成机器学习任务
的训练。TPU提高了机器学习应用中大量使用的线性代数计算的性能。
当训练大型复杂的神经网络模型时，TPU可以大幅度缩短达到既定准确
率所需的时间，提高模型的收敛速度。例如，以前在其他硬件平台上需
要花费数周时间进行训练的深度学习模型，在TPU上只需数小时即可完
成训练。同时，借助谷歌公司开发的TensorFlow深度学习框架以及对
TPU硬件的针对性优化，研究人员可以借助TensorFlow提供的API，方便



地将模型迁移到TPU硬件上运行。目前，TPU主要支持TensorFlow深度学
习框架，并逐步完善对PyTorch深度学习框架的支持，基本满足了大多
数相关从业人员的需求。

图7-1给出了两种常用TPU的硬件架构图，包括TPU v2和TPU v3。每
个TPU版本定义了TPU设备的特定硬件特征，其中包括每个TPU核心的架
构、高带宽内存（HBM）的数量、每个TPU设备上核心之间的互连和可用
于设备间通信的网络接口。TPU v2和TPU v3之间的属性对比如表7-1所
示。

与分布式GPU类似，谷歌数据中心中的TPU Pod是通过专用高速网络
相互连接的多TPU设备。TPU节点中的主机在所有TPU设备上分配机器学
习工作负载。在TPU Pod中，TPU芯片在设备上互连，同时通过专用高速
网络互连，因此芯片之间的通信无需主机CPU或主机网络资源。由TPU
v2构成的TPU v2 Pod可最高拥有512个TPU核心和4 TB的总内存。而TPU
v3 Pod可进一步将核心数提升至2048个，并且提供高达32 TB的总内
存。由于可以提供超大算力和内存，TPU Pod也是目前训练超大规模预
训练语言模型的首选设备之一。

图7-1 两种常用TPU的硬件架构图

表7-1 TPU v2和TPU v3之间的属性对比



目前，TPU只能通过谷歌云服务器访问使用，无法像GPU一样自行采
购使用。一张TPU v2的每小时使用费用是4.5美元，而TPU v3是8美元，
价格较为昂贵。不过，对于想体验TPU的用户来说，谷歌公司推出的
Colab在线编程平台是一个很好的选择。Colab是一个基于Jupyter
Notebook的可交互式在线编程平台，目前用户可以免费使用Colab的基
础版本。用户可以选用一张英伟达GPU或者谷歌TPU做深度学习相关的实
验。感兴趣的读者可以访问Colab相关网站了解更多详情。

7.2 GPT

OpenAI 公司在2018年提出了一种生成式预训练（Generative Pre-

Training，GPT）模型[17]用来提升自然语言理解任务的效果，正式将自
然语言处理带入“预训练”时代。“预训练”时代意味着利用更大规模
的文本数据以及更深层的神经网络模型学习更丰富的文本语义表示。同
时，GPT的出现打破了自然语言处理各个任务之间的壁垒，使得搭建一
个面向特定任务的自然语言处理模型不再需要了解非常多的任务背景，
只需要根据任务的输入输出形式应用这些预训练语言模型，就能够达到
一个不错的效果。因此，GPT提出了“生成式预训练+判别式任务精
调”的自然语言处理新范式，使得自然语言处理模型的搭建变得不再复
杂。

• 生成式预训练：在大规模文本数据上训练一个高容量的语言模
型，从而学习更加丰富的上下文信息；

• 判别式任务精调：将预训练好的模型适配到下游任务中，并使用
有标注数据学习判别式任务。

接下来将从两个部分介绍GPT模型。首先介绍GPT模型的基本结构及
其预训练方法，然后介绍GPT模型在不同下游任务中的应用。

7.2.1 无监督预训练

GPT的整体结构是一个基于Transformer的单向语言模型，即从左至
右对输入文本建模，如图7-2所示。



图7-2 GPT的整体模型结构

GPT利用常规语言建模的方法优化给定文本序列x=x1··· xn的最

大似然估计LPT。

式中，k表示语言模型的窗口大小，即基于k个历史词xi−k··· xi

−1预测当前时刻的词xi；θ表示神经网络模型的参数，可使用随机梯度

下降法优化该似然函数。

具体地，GPT使用了多层Transformer作为模型的基本结构。由于在
4.4.3节中已经介绍了Transformer的内部结构，因此这里不再赘述。对

于长度为k的窗口词序列x′=x−k···x−1，通过以下方式计算建模概率

P。

式中， 表示 x′ 的独热向量表示；

表示词向量矩阵； 表示位置向量矩阵
（此处只截取窗口 x′ 对应的位置向量）；L表示Transformer的总层
数。



7.2.2 有监督下游任务精调

在预训练阶段，GPT利用大规模数据训练出基于深层Transformer的
语言模型，已经掌握了文本的通用语义表示。精调（Fine-tuning）的
目的是在通用语义表示的基础上，根据下游任务（Downstream task）
的特性进行领域适配，使之与下游任务的形式更加契合，以获得更好的
下游任务应用效果。接下来，将介绍如何将预训练好的GPT应用在实际
的下游任务中。

下游任务精调通常是由有标注数据进行训练和优化的。假设下游任
务的标注数据为C，其中每个样例的输入是x=x1···xn构成的长度为n

的文本序列，与之对应的标签为y。首先将文本序列输入预训练的GPT

中，获取最后一层的最后一个词对应的隐含层输出 ，如式（7-3）
所示。紧接着，将该隐含层输出通过一层全连接层变换，预测最终的标
签。

式中， 表示全连接层权重，k表示标签个数。

最终，通过优化以下损失函数精调下游任务。

另外，为了进一步提升精调后模型的通用性以及收敛速度，可以在
下游任务精调时加入一定权重的预训练任务损失。这样做是为了缓解在
下游任务精调的过程中出现灾难性遗忘（Catastrophic Forgetting）
问题。因为在下游任务精调过程中，GPT的训练目标是优化下游任务数
据上的效果，更强调特殊性。因此，势必会对预训练阶段学习的通用知
识产生部分的覆盖或擦除，丢失一定的通用性。通过结合下游任务精调
损失和预训练任务损失，可以有效地缓解灾难性遗忘问题，在优化下游
任务效果的同时保留一定的通用性。在实际应用中，可通过下式精调下
游任务。



式中， 表示精调任务损失； 表示预训练任务损失；λ表
示权重，通常λ的取值介于[0，1]。

特别地，当λ=0时， 一项无效，表示只使用精调任务损失

优化下游任务。而当λ=1时， 和 具有相同的权重。在实
际应用中，通常设置λ=0.5，因为在精调下游任务的过程中，主要目的

还是要优化有标注数据集的效果，即优化 。而 的引入主要是

为了提升精调模型的通用性，其重要程度不及 ，因此设置 λ=0.5
是一个较为合理的值（不同任务之间可能有一定的区别）。

7.2.3 适配不同的下游任务

7.2.2节描述了GPT在下游任务精调的通用做法。但不同任务之间的
输入形式各不相同，应如何根据不同任务适配GPT的输入形式成为一个
问题。本节介绍自然语言处理中几种典型的任务在GPT中的输入输出形
式，其中包括：单句文本分类、文本蕴含、相似度计算和选择型阅读理
解，如图7-3所示。

图7-3 GPT在不同下游任务中的应用

（1）单句文本分类。单句文本分类是最常见的自然语言处理任务
之一，其输入由单个文本构成，输出由对应的分类标签构成。假设输入
为x=x1··· xn，单句文本分类的样例将通过如下形式输入GPT中。

＜s＞x1x2··· xn＜e＞



式中，＜s＞表示开始标记；＜e＞表示结束标记。

（2）文本蕴含。文本蕴含的输入由两段文本构成，输出由分类标
签构成，用于判断两段文本之间的蕴含关系。需要注意的是，文本蕴含
中的前提（Premise）和假设（Hypothesis）是有序的，即在所有样例
中需要使用统一格式，两者顺序必须固定（前提在前或者假设在前）。

假设文本蕴含的样例分别为 和
，其将通过如下形式输入GPT中。

式中，$表示分隔标记，用于分隔两段文本；n和m分别表示x（1）和

x（2）的长度。

（3）相似度计算。相似度计算任务也由两段文本构成。但与文本
蕴含任务不同的是，参与相似度计算的两段文本之间不存在顺序关系。

假设相似度计算的样例分别为 ，

，其将通过如下形式输入GPT中，得到两个相应的
隐含层表示。最终将这两个隐含层表示相加，并通过一个全连接层预测
相似度。

（4）选择型阅读理解。选择型阅读理解任务是让机器阅读一篇文
章，并且需要从多个选项中选择出问题对应的正确选项，即需要将〈篇
章，问题，选项〉作为输入，以正确选项编号作为标签。根据上述任务
形式，假设篇章为p=p1p2··· pn，问题为q=q1q2··· qm，第i个选

项为 ，并假设N为选项个数，其将通过如下形式输
入GPT中。



将〈篇章，问题，选项〉作为输入，通过GPT建模得到对应的隐含
层表示，并通过全连接层得到每个选项的得分。最终，将N个选项的得
分拼接，通过Softmax函数得到归一化的概率（单选题），并通过交叉
熵损失函数学习。

7.3 BERT

BERT（Bidirectional Encoder Representation from

Transformers）[18]是由Devlin等人在2018年提出的基于深层
Transformer的预训练语言模型。BERT不仅充分利用了大规模无标注文
本来挖掘其中丰富的语义信息，同时还进一步加深了自然语言处理模型
的深度。

这一节将着重介绍BERT的建模方法，其中包括两个基本的预训练任
务以及两个进阶预训练任务。最后，介绍如何利用BERT在四类典型的自
然语言处理任务上快速搭建相应的模型，并结合代码实现进行实战。

7.3.1 整体结构

首先，从整体框架的角度对BERT进行介绍，了解其基本的组成部
分，然后针对每个部分详细介绍。BERT的基本模型结构由多层
Transformer构成，包含两个预训练任务：掩码语言模型（Masked
Language Model，MLM）和下一个句子预测（Next Sentence
Prediction，NSP），如图7-4所示。



图7-4 BERT的整体模型结构

可以看到，模型的输入由两段文本x（1）和x（2）拼接组成，然后通
过BERT建模得到上下文语义表示，最终学习掩码语言模型和下一个句子
预测。需要注意的是，掩码语言模型对输入形式并没有特别要求，可以
是一段文本也可以是两段文本。而下一个句子预测要求模型的输入是两
段文本。因此，BERT在预训练阶段的输入形式统一为两段文本拼接的形
式。接下来介绍如何对两段文本建模，得到对应的输入表示。

7.3.2 输入表示

BERT的输入表示（Input Representation）由词向量（Token
Embeddings）、块向量（Segment Embeddings）和位置向量（Position
Embeddings）之和组成，如图7-5所示。

图7-5 BERT的输入表示

为了计算方便，在BERT中，这三种向量维度均为e，因此可通过下
式计算输入序列对应的输入表示v：



式中，vt表示词向量；vs表示块向量；vp表示位置向量；三种向量
的大小均为N× e，N表示序列最大长度，e表示词向量维度。接下来介
绍这三种向量的计算方法。

（1）词向量。与传统神经网络模型类似，BERT中的词向量[2]同样
通过词向量矩阵将输入文本转换成实值向量表示。具体地，假设输入序

列x对应的独热向量表示为 ，其对应的词向量表示vt为：

式中， 表示可训练的词向量矩阵；|V|表示词表大
小；e表示词向量维度。

（2）块向量。块向量用来编码当前词属于哪一个块（Segment）。
输入序列中每个词对应的块编码（Segment Encoding）为当前词所在块
的序号（从0开始计数）。

• 当输入序列是单个块时（如单句文本分类），所有词的块编码均
为0；

• 当输入序列是两个块时（如句对文本分类），第一个句子中每个
词对应的块编码为0，第二个句子中每个词对应的块编码为1。

需要注意的是，[CLS]位（输入序列中的第一个标记）和第一个块
结尾处的[SEP]位（用于分隔不同块的标记）的块编码均为0。接下来，

利用块向量矩阵Ws将块编码 转换为实值向量，得到块向量

vs：

式中， 表示可训练的块向量矩阵； 表示块数
量；e表示块向量维度。

（3）位置向量。位置向量用来编码每个词的绝对位置。将输入序
列中的每个词按照其下标顺序依次转换为位置独热编码。下一步，利用



位置向量矩阵Wp将位置独热编码 转换为实值向量，得到位

置向量vp：

式中， 表示可训练的位置向量矩阵；N表示最大位置
长度；e表示位置向量维度。

为了描述方便，后续输入表示层的操作统一归纳为式（7-12）。

对于给定的原始输入序列X，经过如下处理得到BERT的输入表示v：

式中， 表示输入表示层的最终输出结果，即词向量、块
向量和位置向量之和；N 表示最大序列长度；e表示输入表示维度。

7.3.3 基本预训练任务

与GPT不同的是，BERT并没有采用传统的基于自回归的语言建模方
法，而是引入了基于自编码（Auto-Encoding）的预训练任务进行训
练。BERT的基本预训练任务由掩码语言模型和下一个句子预测构成。下
面详细介绍两个基本预训练任务。

1.掩码语言模型

传统基于条件概率建模的语言模型只能从左至右（顺序[3]）或者是
从右至左（逆序）建模文本序列。如果同时进行顺序建模和逆序建模文
本，则会导致信息泄露。顺序建模表示根据“历史”的词预测“未
来”的词。与之相反，逆序建模是根据“未来”的词预测“历史”的
词。如果对上述两者同时建模则会导致在顺序建模时“未来”的词已被
逆序建模暴露，进而语言模型倾向于从逆序建模中直接输出相应的词，
而非通过“历史”词推理预测，从而使得整个语言模型变得非常简单，
无法学习深层次的语义信息。对于逆序建模，同样会遇到类似的问题。



由于这种问题的存在，在第6章中提到的ELMo模型采用了独立的前向和
后向两个语言模型建模文本。

为了真正实现文本的双向建模，即当前时刻的预测同时依赖于“历
史”和“未来”，BERT采用了一种类似完形填空（Cloze）的做法，并
称之为掩码语言模型（MLM）。MLM预训练任务直接将输入文本中的部分
单词掩码（Mask），并通过深层Transformer模型还原为原单词，从而
避免了双向语言模型带来的信息泄露问题，迫使模型使用被掩码词周围
的上下文信息还原掩码位置的词。

在BERT中，采用了15%的掩码比例，即输入序列中15%的WordPieces
子词被掩码。当掩码时，模型使用 [MASK]标记替换原单词以表示该位
置已被掩码。然而，这样会造成预训练阶段和下游任务精调阶段之间的
不一致性，因为人为引入的 [MASK]标记并不会在实际的下游任务中出
现。为了缓解这个问题，当对输入序列掩码时，并非总是将其替换为
[MASK]标记，而会按概率选择以下三种操作中的一种：

• 以80%的概率替换为 [MASK]标记；

• 以10%的概率替换为词表中的任意一个随机词；

• 以10%的概率保持原词不变，即不替换。

表7-2给出了三种掩码方式的示例。可以看到，当要预测 [MASK]标
记对应的单词时，模型不仅需要理解当前空缺位置之前的词，同时还要
理解空缺位置之后的词，从而达到了双向语言建模的目的。在了解MLM
预训练任务的基本方法后，接下来介绍其建模方法。

表7-2 MLM任务训练样本示例

（1）输入层。由于掩码语言模型并不要求输入一定是两段文本，
为了描述方便，假设原始输入文本为x1x2··· xn，通过上述方法掩码

后的输入文本为 ，xi表示输入文本的第i个词， 表示经过



掩码处理后的第i个词。对掩码后的输入文本进行如下处理，得到BERT
的输入表示v：

式中，[CLS]表示文本序列开始的特殊标记；[SEP]表示文本序列之
间的分隔标记。

需要注意的是，如果输入文本的长度n小于BERT的最大序列长度N，
需要将补齐标记（Padding Token）[PAD]拼接在输入文本后，直至达到
BERT的最大序列长度N。例如，在下面的例子中，假设BERT的最大序列
长度N=10，而输入序列长度为7（两个特殊标记加上x1至x5），需要在

输入序列后方添加3个[PAD]补齐标记。

[CLS] x1x2x3x4x5[SEP] [PAD] [PAD] [PAD]

而如果输入序列X 的长度大于BERT的最大序列长度N，需要对输入
序列X截断至BERT的最大序列长度N。例如，在下面的例子中，假设BERT
的最大序列长度N=5，而输入序列长度为7（两个特殊标记加上x1至

x5），需要对序列截断，使有效序列（输入序列中去除2个特殊标记）

长度变为3。

[CLS] x1x2x3[SEP]

为了描述方便，后续将忽略补齐标记 [PAD]的处理，并以N 表示最
大序列长度。

（2） BERT 编码层。在 BERT 编码层中，BERT 的输入表示 v 经
过 L 层Transformer，借助自注意力机制充分学习文本中的每个词之间
的语义关联。由于Transformer的编码方法已在4.4.3节中描述，此处不
再赘述。

式中， 表示第l层Transformer的隐含层输出，同时规

定h[0]=v，以保持式（7-16）的完备性。为了描述方便，略去层与层之



间的标记并简化为：

式中，h表示最后一层Transformer的输出，即h[L]。通过上述方法

最终得到文本的上下文语义表示 ，其中d表示BERT的隐含层
维度。

（3）输出层。由于掩码语言模型仅对输入文本中的部分词进行了
掩码操作，因此并不需要预测输入文本中的每个位置，而只需预测已经

掩码的位置。假设集合 表示所有掩码位置的
下标，k表示总掩码数量。如果输入文本长度为n，掩码比例为15%，则

。然后，以集合 中的元素为下标，从输入序列的上
下文语义表示h中抽取出对应的表示，并将这些表示进行拼接得到掩码

表示 。

在BERT中，由于输入表示维度e和隐含层维度d相同，可直接利用词

向量矩阵 （式7-9）将掩码表示映射到词表空间。对于掩

码表示中的第i个分量 ，通过下式计算该掩码位置对应的词表上的
概率分布Pi。

式中， 表示全连接层的偏置。

最后，在得到掩码位置对应的概率分布Pi后，与标签yi（即原单词

xi的独热向量表示）计算交叉熵损失，学习模型参数。

（4）代码实现。为了使读者加深对MLM预训练任务的理解，此处给
出BERT原版的生成MLM训练数据的方法，并详细介绍其中的重点操作。





2.下一个句子预测

在MLM预训练任务中，模型已经能够根据上下文还原掩码部分的
词，从而学习上下文敏感的文本表示。然而，对于阅读理解、文本蕴含
等需要两段输入文本的任务来说，仅依靠MLM无法显式地学习两段输入
文本之间的关联。例如，在阅读理解任务中，模型需要对篇章和问题建
模，从而能够找到问题对应的答案；在文本蕴含任务中，模型需要分析
输入的两段文本（前提和假设）的蕴含关系。

因此，除了MLM任务，BERT还引入了第二个预训练任务——下一个
句子预测（NSP）任务，以构建两段文本之间的关系。NSP任务是一个二

分类任务，需要判断句子B是否是句子A的下一个句子[4]，其训练样本由



以下方式产生。

• 正样本：来自自然文本中相邻的两个句子“句子A”和“句子
B”，即构成“下一个句子”关系；

• 负样本：将“句子B”替换为语料库中任意一个其他句子，即构
成“非下一个句子”关系。

NSP任务整体的正负样本比例控制在1：1。由于NSP任务的设计原则
较为简单，通过上述方法能够自动生成大量的训练样本，所以也可以看
作一个无监督学习任务。表7-3给出了NSP任务的样本示例。

表7-3 NSP任务的样本示例

NSP任务的建模方法与MLM任务类似，主要是在输出方面有所区别。
下面针对NSP任务的建模方法进行说明。

（1）输入层。对于给定的经过掩码处理后的输入文本

经过如下处理，得到BERT的输入表示v。

式中，[CLS]表示文本序列开始的特殊标记；[SEP]表示文本序列之
间的分隔标记。

（2） BERT编码层。在BERT编码层中，输入表示v经过L层
Transformer的编码，借助自注意力机制充分学习文本中每个词之间的
语义关联，最终得到输入文本的上下文语义表示。



式中， ，其中N 表示最大序列长度，d表示BERT的隐含
层维度。

（3）输出层。与MLM任务不同的是，NSP任务只需要判断输入文

本x（2）是否是x（1）的下一个句子。因此，在NSP任务中，BERT使用了
[CLS]位的隐含层表示进行分类预测。具体地，[CLS]位的隐含层表示由
上下文语义表示h的首个分量h0构成，因为[CLS]是输入序列中的第一个

元素。在得到[CLS]位的隐含层表示h0后，通过一个全连接层预测输入

文本的分类概率 。

式中， 表示全连接层的权重； 表示全连接层
的偏置。

最后，在得到分类概率P 后，与真实分类标签y计算交叉熵损失，
学习模型参数。

7.3.4 更多预训练任务

除了上述的基本预训练任务，还可将MLM任务替换为如下两种进阶
预训练任务，以进一步提升预训练难度，从而挖掘出更加丰富的文本语
义信息。

1.整词掩码

在MLM任务中，最小的掩码单位是WordPiece子词（中文则是字），
而这种掩码方法存在一个问题。当一个整词的部分WordPiece子词被掩
码时，仅依靠未被掩码的部分可较为容易地预测出掩码位置对应的原
WordPiece子词，存在一定的信息泄露。图7-6给出了这种问题的一个示
例。在图7-6（a）中，模型很容易就能将掩码部分（以 [M]标记）的词
预测为“果”，因为其前一个字“苹”具有较强的限定性。而在图7-
6（b）中，模型可填入的两个字的词可以有很多种，相对来说难度更
大。



图7-6 WordPiece子词信息泄露问题示例

整词掩码（Whole Word Masking，WWM）[5]预训练任务的提出解决
了Word-Piece子词信息泄露的问题。在整词掩码中，仍然沿用传统MLM
任务的做法，仅在掩码方式上做了改动，即最小掩码单位由WordPiece
子词变为整词。即当一个整词的部分WordPiece子词被掩码时，属于该
词的其他子词也会被掩码。表7-4给出了原始MLM掩码和整词掩码的对比
示例。从例子中可以看到，原始掩码输入中，每个子词是否被掩码是相
对独立的。而在整词掩码输入中，构成单词“philammon”的所有子
词“phil”“＃＃am”和“＃＃mon”都会被掩码（＃＃为子词前缀标
记）。

表7-4 原始MLM掩码和整词掩码的对比示例

（1）正确理解整词掩码。在掩码语言模型中提到的掩码操作应理
解为广义的掩码操作，即替换为[MASK]、替换为随机词和保留原词，这
三种操作按照概率选择其中一种，而不能只理解为将待处理文本转换为
[MASK]标记。同时，当整词掩码时，容易理解为待掩码整词中的每个子
词的掩码方式是一样的。然而，实际上在原版BERT中的实现并非如此。

下面给出了一个整词掩码的实际运行示例[6]。给定原句，

经过WordPiece分词器处理后，



可以看到单词“apple”被切为“ap”“＃＃p”“＃＃le”，
而“tree”被切为“tr”“＃＃ee”。运行十次MLM的掩码结果如下，
其中单词后的感叹号表示“保留原词”的掩码方式，[RANDOM]为“替换
为随机词”的情况。

运行十次整词掩码的结果如下。

根据以上观察，可以总结出如下结论。在整词掩码中，当发生掩码
操作时，

• 整词中的各个子词均会被掩码处理；

• 子词的掩码方式并不统一，并不是采用一样的掩码方式（三选
一）；

• 子词各自的掩码方式受概率控制。

（2）中文整词掩码。应用WordPiece分词器时，中文将以字为粒度



切分，而不存在英文中的“子词”的概念，因为中文不是由字母构成的
语言，这一点与英文等拉丁语系语言存在较大差异。在传统中文信息处
理中，文本通常会经过中文分词（Chinese Word Segmentation，CWS）
处理，转换为以词为粒度的序列。因此，可将中文的字（Character）
类比为英文中的WordPiece子词，进而可以应用整词掩码技术。

这里使用LTP工具（见3.2节）对中文进行分词。当进行整词掩码
时，掩码最小单位由字变为词，即当一个整词中的部分字被掩码时，属
于该词的其他字也会被掩码。表7-5给出了在中文环境下的原始MLM掩码
和整词掩码的对比示例。

表7-5 中文整词掩码对比示例

2.N-gram掩码

为了进一步挖掘模型对连续空缺文本的还原能力，可将原始的掩码
语言模型进一步扩展成基于N-gram的掩码语言模型。N-gram掩码（N-
gram Masking，NM）语言模型，顾名思义就是将连续的N-gram文本进行
掩码，并要求模型还原缺失内容。需要注意的是，与整词掩码类似，N-
gram掩码语言模型仅对掩码过程有影响（即只会影响选择掩码位置的过
程），但仍然使用经过WordPiece分词后的序列作为模型输入。

在整词掩码语言模型中，需要识别整词的边界，而在N-gram掩码语
言模型中，需要进一步识别短语级别的边界信息。此处，可以借鉴统计
机器翻译（Statistical Machine Translation，SMT）中的短语表抽取

（Phrase Table Extraction）方法，从语料库中抽取出高频短语[7]。
然而，对于预训练语言模型使用的超大规模语料来说，统计所有短语是

非常耗时的。因此，这里借鉴Cui等人使用的N-gram掩码方法[19]，其具
体操作流程如下。

• 首先根据掩码概率判断当前标记（Token）是否应该被掩码；

• 当被选定为需要掩码时，进一步判断N-gram的掩码概率。此处假
设最大短语长度为4-gram。为了避免连续N-gram短语被掩码导致过长文



本的缺失，此处针对低元短语采用高概率，高元短语采用低概率抽取。
例如，对于unigram，采用40%的概率，对于4-gram，采用10%的概率；

• 对该标记及其之后的N−1个标记进行掩码。当不足N−1个标记时，
以词边界截断；

• 在掩码完毕后，跳过该N-gram，并对下一个候选标记进行掩码判
断。

3.三种掩码策略的区别

掩码语言模型（MLM）、整词掩码（WWM）和N-gram掩码（NM）三种
掩码策略之间既有一定的联系也有一定的区别，如表7-6所示。

表7-6 三种掩码策略的联系与区别

需要特别强调的是，三种掩码策略仅影响模型的预训练阶段，而对
于下游任务精调是透明的。即不论使用哪一种掩码策略，下游任务均使
用经过WordPiece分词方法得到的输入序列。因此，经过以上三种掩码
策略得到的BERT模型是可以无缝替换的，且无须替换任何下游任务的精
调代码。

7.3.5 模型对比

最后，通过表7-7了解BERT与其他文本表示方法之间的对比。

表7-7 BERT、GPT、ELMo和Word2vec之间的对比



7.4 预训练语言模型的应用

7.4.1 概述

在经过大规模数据的预训练后，可以将预训练语言模型应用在各种
各样的下游任务中。通常，预训练语言模型的应用方式分为以下两种。
图7-7给出了两种应用方式的图解。

图7-7 BERT的两种应用方式

• 特征提取：仅利用BERT提取输入文本特征，生成对应的上下文语
义表示，而BERT本身不参与目标任务的训练，即BERT部分只进行解码
（无梯度回传）；

• 模型精调：利用BERT作为下游任务模型基底，生成文本对应的上
下文语义表示，并参与下游任务的训练。即在下游任务学习过程中，
BERT对自身参数进行更新。



特征提取方法与传统的词向量技术类似，使用起来相对简单。同
时，因为预训练语言模型不参与下游任务的训练，在训练效率上相对较
高。但这种方法也有一定的缺点，因为预训练语言模型不参与下游任务
的训练，本身无法根据下游任务进行适配，更多依赖于下游任务模型的
设计，进一步加大了建模难度。

而模型精调方法能够充分利用预训练语言模型庞大的参数量学习更
多的下游任务知识，使预训练语言模型与下游任务数据更加适配。但模
型精调方法也有一定的弊端，因其要求预训练语言模型参与下游任务的
训练，所以需要更大的参数存储量以存储模型更新所需的梯度，进而在
模型训练效率上存在一定的劣势。

近些年来，以GPU和TPU为代表的高性能计算设备不断升级，计算机
的存储能力和运算能力都得到了相应的提升。主流型号的GPU和TPU已充
分具备模型精调所需的计算条件。同时，通过大量的实验数据表明，模
型精调方法训练出的模型效果显著优于特征提取方法。因此，接下来均
以模型精调方法为例，介绍预训练语言模型在不同自然语言处理任务中
的应用方法。

下面围绕四种典型的自然语言处理任务类型进行介绍，包括单句文
本分类、句对文本分类、阅读理解和序列标注。

7.4.2 单句文本分类

1.建模方法

单句文本分类（Single Sentence Classification，SSC）任务是
最常见的自然语言处理任务，需要将输入文本分成不同类别。例如，在

情感分类任务SST-2[20]中，需要将影评文本输入文本分类模型中，并将
其分成“褒义”或“贬义”分类标签中的一个。应用BERT处理单句文本
分类任务的模型由输入层、BERT编码层和分类输出层构成，如图7-8所
示。接下来将对每个模块详细介绍，并通过代码进一步说明应用方法。

（1）输入层。对于一个给定的经过WordPiece分词后的句
子x1x2··· xn，进行如下处理得到BERT的原始输入X。接下来使用词

向量矩阵、块向量矩阵和位置向量矩阵对原始输入X进行映射，得到输
入表示v：



式中，n表示句子长度；[CLS]表示文本序列开始的特殊标记；
[SEP]表示文本序列之间的分隔标记。

图7-8 基于BERT的单句文本分类模型

（2） BERT编码层。在BERT编码层中，输入表示v经过多层
Transformer的编码，借助自注意力机制充分学习句子中每个词之间的

语义关联，并最终得到句子的上下文语义表示 ，其中，d表
示BERT的隐含层维度。

由于BERT预训练阶段的NSP任务使用了[CLS]位预测，通常在文本分
类任务中也使用同样的方法预测。模型使用[CLS]位对应的隐含层表
示h0，其值由h的首个分量的表示构成，因为[CLS]是输入序列的第一个

元素。

（3）分类输出层。在得到[CLS]位的隐含层表示h0后，通过一个全

连接层预测输入文本对应的分类标签。由下式计算概率分布
：

式中， 表示全连接层的权重； 表示全连接
层的偏置；K 表示分类标签数。



最后，在得到分类概率分布P 后，与真实分类标签y计算交叉熵损
失，对模型参数进行学习。

2.代码实现

接下来将结合实际代码，介绍BERT在单句文本分类任务中的训练方
法。这里以英文情感分类（二分类）数据集 SST-2 为例介绍。这里主
要应用了由 Hug-gingFace开发的简单易用的transformers包和
datasets库进行建模，可以极大地简化数据处理和模型建模过程。以下
给出了单句文本分类任务的精调代码。





在训练完毕后，执行以下评测代码，得到模型在验证集上的效果。

终端输出评测结果，包括准确率和损失等，如下所示。

7.4.3 句对文本分类

1.建模方法

句对文本分类（Sentence Pair Classification，SPC）任务与单
句文本分类任务类似，需要将一对文本分成不同类别。例如，在英文文

本蕴含数据集RTE[21]中，需要将两个句子输入文本分类模型，并将其分
成“蕴含”“冲突”分类标签中的一个。应用BERT处理句对文本分类任
务的模型与单句文本分类模型类似，仅在输入层有所区别，如图7-9所
示。

输入层：对于一对给定的经过 WordPiece 分词后的句子

和 ，将其拼接得到BERT的原始输入X和
输入表示v。



式中，n和m分别表示第一个句子和第二个句子的长度；[CLS]表示
文本序列开始的特殊标记；[SEP]表示文本序列之间的分隔标记。

句对文本分类的BERT编码层、分类输出层和训练方法与单句文本分
类一致，因此不再赘述。

图7-9 基于BERT的句对文本分类模型

2.代码实现

接下来将结合实际代码，介绍BERT在句对文本分类任务中的训练方
法。这里以英文文本蕴含数据集 RTE 为例介绍。以下给出了句对文本
分类任务的精调代码。





在训练完毕后，执行以下评测代码，得到模型在验证集上的效果。

终端输出评测结果，包括准确率和损失等，如下所示。

7.4.4 阅读理解

1.建模方法



本节以抽取式阅读理解（Span-extraction Reading
Comprehension）为例，介绍BERT在阅读理解任务上的应用方法。抽取
式阅读理解主要由篇章（Passage）、问题（Question）和答案
（Answer）构成，要求机器在阅读篇章和问题后给出相应的答案，而答
案要求是从篇章中抽取出的一个文本片段（Span）。该任务可以简化为
预测篇章中的一个起始位置和终止位置，而答案就是介于两者之间的文

本片段。常用的英文阅读理解数据集SQuAD[22]和中文阅读理解数据集

CMRC 2018[23]都属于抽取式阅读理解数据集。图7-10给出了一个抽取式
阅读理解的示例。

图7-10 抽取式阅读理解示例

应用BERT处理抽取式阅读理解任务的模型与句对文本分类任务类
似，由输入层、BERT编码层和答案输出层构成，如图7-11所示。

（1）输入层。在输入层中，对问题Q= q1q2··· qn和篇章P=

p1p2··· pm （P和Q均经过WordPiece分词后得到）拼接得到BERT的原

始输入序列X。

式中，n表示问题序列长度；m表示篇章序列长度；[CLS]表示文本
序列开始的特殊标记；[SEP]表示文本序列之间的分隔标记。



图7-11 基于BERT的抽取式阅读理解模型

注意：需要注意的是，通常此处将问题放在篇章的前面。其原因是
BERT一次只能处理一个固定长度为N 的文本序列（如N=512）。如果将
问题放在输入的后半部分，当篇章和问题的总长度超过N 时，部分问题
文本将会被截断，导致无法获得完整的问题信息，进而影响阅读理解系
统的整体效果。而将篇章放在后半部分，虽然部分甚至全部篇章文本可
能会被截断，但可以通过篇章切片的方式进行多次预测，并综合相应的
答题结果得到最终的输出。

（2） BERT编码层。在BERT编码层中，输入表示v经过多层
Transformer的编码，借助自注意力机制充分学习篇章和问题之间的语

义关联，并最终得到上下文语义表示 ，其中d为BERT的隐含
层维度。

（3）答案输出层。在得到输入序列的上下文语义表示h后，通过全
连接层，将每个分量（对应输入序列的每个位置）压缩为一个标量，并

通过Softmax函数预测每个时刻成为答案起始位置的概率Ps以及终止位

置的概率Pe。具体地，由下式计算起始位置概率Ps：

式中， 表示全连接层的权重； 表示全连接层

的偏置，加在每一个时刻的输出上（即复制成N 份，与hWs相加）。类

似地，通过下式计算终止位置概率Pe：



式中， 表示全连接层的权重； 表示全连接层的
偏置，加在每一个时刻的输出上。

在得到输入序列的起始位置概率Ps以及终止位置的概率Pe后，通过
交叉熵损失函数学习模型参数。最终，将起始位置和终止位置的交叉熵

损失平均，得到模型最终的总损失 ：

（4）解码方法。在得到起始位置以及终止位置的概率后，使用简
单的基于Top-k 的答案抽取方法获得最终答案。首先，该算法分别计算
出起始位置和终止位置中概率最高的k个项目，并记录对应的下标和概
率，形成二元组〈位置，概率〉。对于任意一项起始位置二元组中的概

率 和任意一项终止位置二元组中的概率 ，计算概率乘积Pi，j，以

代表由对应起始位置与终止位置形成的文本片段概率：

最终形成k×k个三元组〈起始位置，终止位置，文本片段概率〉，
并对该三元组列表按文本片段概率降序排列。由于抽取答案需要满足先
决条件“起始位置≤终止位置”，系统依次扫描上述三元组列表，并将
概率最高且满足先决条件的三元组抽取出来。最终，根据该三元组中的
起始位置和终止位置信息抽取出相应的文本片段作为答案进行输出。

2.代码实现

接下来将结合实际代码，介绍BERT在阅读理解任务中的训练方法。

这里以经典的英文抽取式阅读理解数据集SQuAD[22]为例介绍。以下是阅
读理解任务的精调代码。









SQuAD的解码过程较为复杂，涉及答案位置对齐、N-best列表计算
等操作，由于篇幅有限，感兴趣的读者可以阅读HuggingFace提供的示
例代码，进一步了解SQuAD抽取答案的过程。

7.4.5 序列标注

1.建模方法

本节将以序列标注中的典型任务——命名实体识别（Named Entity
Recogni-tion，NER）介绍BERT在序列标注任务中的典型应用方法。命
名实体识别需要针对给定输入文本的每个词输出一个标签，以此指定某
个命名实体的边界信息。通常命名实体包含三种类型——人名、地名和
机构名。主流的命名实体识别可分为“BIO”或“BIOES”标注模式，主
要根据边界识别的准则划分，如表7-8所示。为了方便介绍，这里使
用“BIO”标注模式进行说明。

表7-8 命名实体识别的两种标注模式——“BIO”和“BIOES”

通常，基于传统神经网络模型的命名实体识别方法是以词为粒度建



模的。而在以 BERT 为代表的预训练语言模型中，通常使用切分粒度更
小的分词器（如WordPiece）处理输入文本，而这将破坏词与序列标签
的一一对应关系。同时，需要额外记录输入文本中每个词的切分情况并
对齐序列标签。为了简化上述问题，规定当一个词被切分成若干个子词
时，所有子词继承原标签。表7-9给出了一个处理示例，可以看到最后
一个词“Harbin”对应的原始标签是“B-LOC”。而经过BERT的
WordPiece分词处理后，“Harbin”被切分成“Ha”和“＃＃rbin”两
个子词。根据上面的规则，子词“Ha”和“＃＃rbin”均映射到原标
签“B-LOC”。

表7-9 命名实体识别数据处理示例

应用BERT处理命名实体识别任务的模型，由输入层、BERT编码层和
序列标注层构成，如图7-12所示。

图7-12 基于BERT的命名实体识别模型

（1）输入层。输入层的建模与单句文本分类类似，只需对给定的
输入文本x1x2··· xn进行如下处理，得到BERT的原始输入X和输入层

表示v。

式中，n表示句子长度；[CLS]表示文本序列开始的特殊标记；



[SEP]表示文本序列之间的分隔标记。

（2） BERT编码层。在BERT编码层中的操作与阅读理解任务类似，
需要得到输入文本中每个词对应的BERT隐含层表示。输入层表示v经过
多层Trans-former的编码，借助自注意力机制充分学习文本内部的语义

关联，并得到上下文语义表示 ，其中d为BERT的隐含层维
度。

（3）序列标注层。在阅读理解任务中，利用全连接层变换BERT隐
含层表示，得到每个词成为答案起始位置或终止位置的概率，即每个时
刻对应的输出神经元个数为1。而在命名实体识别任务中，需要针对每
个词给出“BIO”标注模式下的分类预测。因此，这一部分仍然使用全
连接层变换BERT隐含层表示，而输出神经元个数变为K，对应“BIO”标
注模式下K个类别的概率值。

正式地，在得到输入序列的上下文语义表示h后，针对输入序列中
的每一个时刻t，预测在“BIO”标注模式下的概率分布Pt，其计算方法

为：

式中， 表示全连接层的权重； 表示全连接

层的偏置；ht∈Rd表示h在时刻t的分量。

最后，在得到每个位置对应的概率分布后，通过交叉熵损失函数对
模型参数学习。同时，为了进一步提升序列标注的准确性，也可以在概
率输出之上增加传统命名实体识别模型中使用的条件随机场
（Conditional Random Field，CRF）预测。感兴趣的读者可以阅读相
关文献了解替换方法。

2.代码实现

接下来将结合实际代码实现介绍 BERT 在命名实体识别任务中的训

练方法。这里以常用的命名实体识别数据集CoNLL-2003 NER[24]为例。
需要注意的是，这一部分需要额外的seqeval库计算命名实体识别的相



关指标。以下是命名实体识别任务的精调代码。





在训练完毕后，执行以下评测代码，得到模型在验证集上的效果。



终端输出评测结果，包括准确率、召回率、F1值和损失等，如下所
示。

7.5 深入理解BERT

7.5.1 概述

以BERT、GPT等为代表的预训练技术为自然语言处理领域带来了巨
大的变革。为了能够从大规模数据中充分地汲取知识，作为“容器”的
预训练模型通常也需要具备相当大的规模。例如，BERT模型含有上亿个
参数，而OpenAI发布的GPT-3模型更是达到了惊人的千亿级参数。尽管
这些大规模的预训练模型在很多任务上表现优异，但是庞大的模型体量
也使得其预测行为变得更加难以“理解”以及“不可控”。对于很多实
际应用而言，模型的性能固然重要，但是对于模型行为给出可信的解释
同样很关键。从这个角度出发，大致衍生出两大类“可解释性”方面的
研究，分别是构建能够“自解释”（Self-explainable）的模型；以及
对于模型行为“事后解释”（Post-hoc explanation）。前者要求在模
型构建之初针对性地设计其结构，使其具备可解释性；而对于BERT等大
规模预训练模型的解释性研究，主要集中于后者。

“解释性”实际上是以人类的视角理解模型的行为。因此，需要建
立模型的行为与人类概念系统之间的映射。而在自然语言处理任务中，
最具解释性的人类概念系统无疑是语言学特征。例如，BERT作为一个多
任务通用的编码器，能够表达哪些语言学特征？BERT模型每一层使用的
多头注意力又分别捕获了哪些关系特征？它的每一层表示是否和ELMo一
样具有层次性？

本小节将从自注意力和表示学习两个角度分析 BERT 模型。首先，



通过可视化分析的方式分析 BERT 的自注意力机制，然后介绍针对
BERT 模型的“探针”（Probe）实验分析方法。

7.5.2 自注意力可视化分析

BERT 模型依赖 Transformer 结构，其主要由多层自注意力网络层
堆叠而成（含残差连接）。而自注意力的本质事实上是对词（或标记）
与词之间关系的刻画。不同类型的关系可以表达丰富的语义，例如名词
短语内的依存关系、句法依存关系和指代关系等。而这些关系特征对于
大部分语义理解类自然语言处理任务具有关键的作用。因此，自注意力
的分析将有助于理解BERT模型对于关系（relational）特征的学习能
力。

文献[25]随机选取了1，000个维基百科文本片段，并对BERT多头自
注意力进行了分析。例如，图7-13的可视化结果展示了不同自注意力头
的行为：有些注意力头分布较为均匀，具有较大的感受野，即编码了
较“分散”的上下文信息；而有些注意力头的注意力分布较为集中，且
显示出一定的模式，如集中在当前词的下一个词，或者[SEP]、句号等
标记上。可以看出，不同的注意力头具有比较多样化的行为，因而能够
编码不同类型的上下文和关系特征。

图7-13 BERT不同自注意力头（x-y表示第x层的第y个自注意力头）的行为模式对比[25]

文献作者进一步分析了不同层的注意力分布。通过计算各层注意力
分布的信息熵（见图7-14）可以发现，一部分注意力头分布具有较大的
熵值（接近平均分布），尤其在BERT的浅层。而在较深的自注意力层
（如6～8层），其分布相对集中，熵值较小。当接近输出层时，熵值又
增大。这种变化趋势在一定程度上可以反映BERT模型中信息聚合（或语



义组合）的过程。在注意力分布较为“广泛”的模型浅层，其表示接近
于词袋表示。随着层次变深，信息开始以不同的方式组合，从而形成集
中在不同局部的注意力分布。而接近输出层的自注意力分布与目标预训
练任务直接相关。对于BERT而言，即为掩码语言模型（MLM）与下一个
句子预测（NSP）的联合训练任务。对更多关于BERT自注意力模式分析
感兴趣的读者，请参考原文献。

图7-14 BERT各层自注意力分布熵值的变化[25]

7.5.3 探针实验

自注意力的可视化分析有助于从直观上理解模型内部的信息流动。
而为了更准确地理解模型的行为，仍然需要定量的实验分析。目前被广
为采用的定量分析方法是探针实验。探针实验的核心思想是设计特定的
探针，对于待分析对象（如自注意力或隐含层表示）进行特定行为分
析。探针通常是一个非参或者非常轻量的参数模型（如线性分类器），
它接受待分析对象作为输入，并对特定行为预测。而预测的准确度可以
作为待分析对象是否具有该行为的衡量指标。例如，为了检验某个自注
意力头对直接宾语（Direct object，dobj）关系的表达能力，可以设
计一个探针对该自注意力头在dobj句法关系预测上的表现进行分析。如
图7-15所示，在BERT第8层第10个自注意力头（记为8-10号）的注意力
分布中，其中红色高亮部分即为dobj关系（funds是plug的直接宾
语）。文献[25]在宾州依存树库（PTB）上进行了探针实验，结果表明
在BERT模型中，确实存在一部分自注意力头较好地捕捉到特定的句法关
系。例如，对于dobj关系的预测准确率达到了86.8%。此外，对于更复
杂的共指关系（Coreference），同样能够找到具有较好预测能力的自
注意力头。



自注意力反映了预训练模型内部信息的聚合过程，而模型的各层隐
含层表示是聚合的结果。因此，也可以对预训练编码器的隐含层表示直
接进行探针实验，从而更好地理解其特性。这里的探针可以是一个简单
的线性分类器，该分类器利用模型的隐含层表示作为特征在目标任务
（如词性标注）上训练，从而根据该任务的表现对预训练模型隐含层表
示中蕴含的语言学特征评估。图7-16展示了这类探针的一般性框架。

对于更复杂的结构预测类任务，如句法分析等，也可以设计针对性
的结构化探针。感兴趣的读者可以参考文献[26]。

图7-15 BERT模型中的8-10号自注意力头对于直接宾语关系的表达[25]

图7-16 对预训练编码器隐含层表示的探针实验示意图

7.6 小结

本章主要介绍了基于大规模数据的预训练语言模型技术。首先，介



绍了基于自回归的预训练语言模型——GPT的建模方法以及如何在下游
任务中应用。然后，重点介绍了预训练语言模型中最经典的BERT模型，
对模型结构和预训练任务的构建进行了详细的介绍，并结合代码对部分
重点技术进行了深入的讲解。同时，除了介绍最基本的预训练任务，还
进一步介绍了与之紧密关联的其他预训练任务，并对它们的异同点进行
了剖析。接着，面向常见的四种自然语言处理任务——单句文本分类、
句对文本分类、抽取式阅读理解和序列标注，以BERT为例介绍了预训练
语言模型在这些任务中的应用方法，并通过相关的代码实现进行实践。
最后，结合最新文献，通过可视化方法及探针实验，对BERT的内部运行
机制进行了深度的剖析。

习题

7.1 从模型的角度对比分析GPT和BERT各自的优缺点是什么？

7.2 阐述BERT的输入表示中为什么要包含位置向量？如果没有位置
向量将有何影响？

7.3 阐述应用三种不同掩码策略（MLM、WWM和NM）的BERT，在预训
练阶段和下游任务精调中的异同点。

7.4 BERT中的MLM预训练任务采用了15%的掩码概率，请阐述增大或
减小掩码概率对预训练语言模型效果可能产生的影响。

7.5 以情感分类数据集SST-2为例，通过实验论证特征提取和模型
精调两种BERT的典型应用方式对下游任务效果的影响。

7.6 在抽取式阅读理解任务中，篇章与问题的拼接顺序会对模型效
果产生何种影响？请以具体的抽取式阅读理解任务CMRC 2018为例进行
实验，并给出相应的实验结论。

[1] 此处以单路英特尔至强金牌系列6240处理器为例进行对比。

[2] 因为BERT中采用WordPiece分词，所以此处指代的是“子词”。为
了叙述方便，如无特殊说明，本章节中的词向量均由子词词表构成。

[3] 此处是以中文和英文为例。对于阿拉伯语等一些语言来说则是逆



序。

[4] 这里的“句子”并不是传统意义上的句子。可以是多个句子组成的
长句，并且不要求一定以终结符结尾（即存在截断的可能性）。

[5] 也称全词掩码。

[6] 此处并非使用BERT原版词表，切词结果仅供演示。

[7] 感兴趣的读者可阅读统计机器翻译的经典工具包Moses的使用教
程。



  第8章 

预训练语言模型进阶

第7章介绍了以GPT、BERT为代表的预训练语言模型及其应用。随着
预训练语言模型逐渐成为自然语言处理领域的常用方法，在近几年，大
量工作集中在如何进一步改进现有的预训练语言模型，如何更好地建模
长文本，如何提升预训练语言模型的效率，以及如何设计出更有效的生
成式预训练语言模型等方面。因此，本章将围绕预训练语言模型的最新
前沿进展，介绍模型优化、长文本处理、蒸馏与压缩、生成式模型几个
主题下的代表性工作。

8.1 模型优化

随着以GPT、BERT为代表的预训练语言模型的提出，很多的工作集
中在进一步优化预训练语言模型，使之在各类自然语言处理任务上获得
更好的效果。本节将围绕模型优化方面介绍五个有代表性的预训练语言
模型：XLNet、RoBERTa、ALBERT、ELECTRA和MacBERT，主要介绍模型的
设计思路及具体的建模方法。

8.1.1 XLNet

1.BERT存在的问题

语言模型通常被分为两大类：自回归语言模型（Auto-Regressive
Language Model，ARLM）和自编码语言模型（Auto-Encoding Language
Model，AELM），如图8-1所示。



图8-1 两种典型的语言模型类型

自回归语言模型是一种最常用的语言模型。传统基于N-gram的语言
模型就属于这个类别（见2.2.1节）。该类模型需要基于给定的历史文
本序列预测下一个单词的概率，其建模方法如下所示。

式中，x表示整个句子；x1：i−1表示下标小于i的历史序列，

即x1··· xi−1。

对于自编码语言模型，其目标是通过上下文重构被掩码的单词。第
7章重点介绍的BERT就属于这个类别，其建模公式表示为：

式中，x表示整个句子；ˆx表示经过掩码的句子；mi表示第i个词是

否被掩码。

XLNet[27]是一种基于Transformer-XL的自回归语言模型，并集成了
自编码语言模型的优点。XLNet的特点主要包括：

• 使用了自回归语言模型结构，使得各个单词的预测存在依赖性，
同时避免了自编码语言模型中引入人造标记[MASK]的问题；

• 引入了自编码语言模型中的双向上下文，能够利用更加丰富的上
下文信息，而不像传统的自回归语言模型只能利用单向的历史信息；

• 使用了Transformer-XL[28]作为主体框架，相比传统的



Transformer拥有更好的性能。

接下来详细介绍 XLNet 引入的两个最重要的改进方法——排列语
言模型和双流注意力机制。关于Transformer-XL，将在8.2.2节单独介
绍。

2.排列语言模型

XLNet的主体结构仍然是一个自回归语言模型。因此，如何将双向
上下文引入自回归语言模型中是首要问题。首先回顾传统的自回归语言
模型，其中预测每一个单词需要依赖其历史词。图8-2给出了一个传统
的自回归语言模型的示例。

图8-2 传统自回归语言模型示例

假设句子x=x1x2x3x4包含四个词，整个句子的建模为：

可以得知，每个词只依赖其历史词，而不能利用未来词。即对于单
向语言模型，句子的建模顺序如下所示。

1→2→3→4

为了构建双向上下文，XLNet创新地提出了一种排列语言模型
（Permutation Language Model）。假设还是建模前面的句子x，并将
建模顺序做如下修改。

3→2→4→1



此时，整个句子的建模为：

那么句子x的建模方式由图8-2变为图8-3。可以看到，当预测x4
时，需要依赖x2和x3。而当预测x1时，需要依赖x2、x3和x4，即实现了

双向上下文的建模方式。

图8-3 排列语言模型示例

根据以上描述，下面给出排列语言模型的正式定义。对于给定长度

为N的句子x= x1···xN，从所有可能的排列方式 中均匀地采样出

一种排序z，并最大化对数似然函数

式中，zi表示在排序z下，下一个预测词xzi在句子中的下标。

从式（8-5）可以看到，概率分布P （xzi|x1：i−1， zi）必须依赖

于目标位置zi。然而，应用标准的方法是不能对式（8-5）进行建模

的。假设通过标准的Softmax函数建模下一个词的概率分布P
（xzi|x1：i−1）：

式中，vx表示词x对应的词向量；hx1：i−1表示x1：i−1对应的隐含层



表示。由此可以看到，隐含层表示hx1：i−1是不依赖于目标位置zi的。也

就是说，对于不同的目标位置zi，式（8-6）总会产生一样的概率分

布，这将无法满足式（8-5）的建模要求。

为了解决上面的问题，XLNet 对式 （8-6） 进行了变动，使其依
赖于目标位置zi。

式中，函数g表示一种依赖于目标位置zi的隐含层表示方法。

3.双流自注意力机制

上文介绍了排列语言模型的构造方法，并在最后引入了新的函数g
产生依赖于目标位置zi的隐含层表示方法。那么，如何构造这样一种函

数g呢？首先需要知道的是，构造这样一个函数是不简单的，其主要原
因有以下两点。

• 当预测 时，函数g应该只需要利用位置信息zi，而非具体的

单词 。通俗地讲，如果函数g已经知道了单词 是什么词，那么只

需要直接将 输出就可以了，从而使得函数g变得异常简单，无法达
成语言建模的目的；

• 当预测xzj时（j＞i），函数g需要编码单词xzi以提供完整的上下

文信息。

从上述原因可知，两者是存在一定矛盾的，无法通过同一个函数涵
盖两种不同的情况。因此，XLNet提出了双流自注意力机制（Two-
stream Self-attention），使用两套表示方法解决上述矛盾。在双流
自注意力机制中，同一个单词具有以下两种不同的表示。

• 内容表示（Content Representation） ：即原始的

Transformer表示方法，可以同时建模单词 及其上下文；



• 查询表示（Query Representation） ：能建模上下文信息

以及目标位置zi，但不能看到单词 。

对于单词xi的第0层内容表示（即第1层Transformer的输入）为

，其中 为输入表示（参考7.3.2节）。而第0层的查询表

示，是由随机初始化的可训练向量构成的，即 。

以上定义了第0层Transformer的表示方法。对于l ∈{1，···，

L}层的Trans-former，则采用下式更新内容表示 和查询表示 。

式中，Q、K、V 分别表示多头自注意力机制中的查询（Query）、
键（Key）和值（Value）。参数更新策略与标准的多头自注意力机制完
全相同。

双流自注意力机制主要通过改变注意力掩码（Attention Mask）矩
阵实现。为了更好地理解双流自注意力机制，这里结合图8-4介绍。

图8-4 双流自注意力机制的示例



图8-4中展示了一个简化了的两层XLNet模型，其输入由四个词构
成，即x1、x2、x3、x4。蓝色框代表内容表示，绿色框代表查询表示。

注意力掩码矩阵是一个方阵，代表了第i个词与第j个词之间是否存在联

系，记对应的内容流注意力掩码矩阵为 ，查询流注意力掩码矩阵

为 。可以看到对于两种不同表示的注意力掩码矩阵是不同的。假
设句子建模顺序为3→2→4→1，内容流与查询流注意力掩码矩阵的构造
方式如表8-1所示。可以看到，两者的区别在于掩码矩阵的对角线是否
为0，即当前词能否看到自己本身的内容。能看到的是内容流，而不能
看到的是查询流。

表8-1 内容流与查询流注意力掩码矩阵的构造方式

最后，使用第L层（即最后一层）Transformer的查询表示 计算
式（8-7）。需要注意的是，由于查询表示是排列语言模型预训练任务
额外引入的，在精调下游任务时并不会使用。

除了上述介绍的排列语言模型和双流自注意力机制，XLNet还引入
了部分预测（Partial Prediction）进一步提升排列语言模型的收敛速
度，使用了相对块编码（Relative Segment Encodings）技术提升模型
对不同输入形式的泛化能力。感兴趣的读者可以阅读文献[27]了解相关
技术的实现方法。

8.1.2 RoBERTa

训练 BERT 需要耗费大量的数据资源和计算资源，所以比较不同的
模型设计决策变得非常困难。为了进一步了解 BERT 的设计合理性，
Liu 等人提出了RoBERTa（Robustly Optimized BERT Pre-training

Approach）[29]，通过大量的实验表明BERT的设计仍然存在较大的改进
空间。因此，RoBERTa模型并没有大刀阔斧地调整BERT，而是针对每一



个设计细节做了详尽的实验，并通过实证方法进一步优化了BERT，并且
在一系列自然语言处理任务中取得了当时最好的效果。

RoBERTa在BERT的基础上引入了动态掩码技术，同时舍弃了NSP任
务。同时，RoBERTa采用了更大规模的预训练数据，并以更大的批次和
BPE词表训练了更多的步数。接下来针对以上几点改进进行介绍。

1.动态掩码

BERT中的MLM任务会对输入文本中的部分单词随机掩码。然而，这
个过程是在数据预处理阶段进行的，而非模型训练阶段。这样就会导致
生成的掩码是静态的，即同一个文本只有一种掩码模式，降低了训练数
据的多样性以及数据的复用效率。为了缓解这个问题，在BERT的原始实
现中，将训练数据复制了10份。这样做后，对于同一个文本就会生成10

种不同的掩码模式[1]。然而，BERT的总训练轮数是40轮左右，同一个掩
码模式仍然会重复4次。

因此，在RoBERTa中引入了动态掩码（Dynamic Masking）技术，即
决定掩码位置和方法是在模型的训练阶段实时计算的。这样就能保证无
论训练多少轮，都能够最大限度地保证同一段文本能够在不同轮数下产
生不同的掩码模式。当预训练轮数较大或数据量较大时，动态掩码方法
能够提高数据的复用效率。另外，通过实验发现，使用动态掩码技术的

BERT在阅读理解数据集SQuAD 2.0[30]以及文本分类数据集SST-2[20]任务

上，能够带来微弱的性能提升，而在MNLI-m[31]任务上有一定的性能损
失，如表8-2所示。

表8-2 静态掩码与动态掩码的实验对比

2.舍弃NSP任务

在原始BERT的预训练过程中，会将两个文本片段拼接在一起作为输
入，并通过NSP任务预测这两段文本是否构成“下一个句子”关系。在

原始BERT的分析实验中，去掉NSP任务会显著降低QNLI[32]（自然语言推

断）任务、MNLI[31] （自然语言推断）任务和SQuAD 1.1[22]（阅读理



解）任务的效果。

为了更好地了解NSP任务的有效性，RoBERTa论文作者对比了以下4
种实验设置。

（1）文本对输入+NSP。是原始BERT的输入形式，即由一对文本构
成，每个文本由多个自然句子组成，整体长度不超过512个标记
（token）；

（2）句子对输入+NSP。由一对句子构成输入序列。由于在大多数
情况下，一对句子的长度小于512，这里通过增大批次大小保持和“文
本对输入”相对一致的数据吞吐量；

（3）跨文档整句输入。由一对文本构成输入序列。当达到文档的
末端时，将继续从下一个文档抽取句子，并添加分割符表示文档边界。
在此设置下不再使用NSP损失；

（4）文档内整句输入。与“跨文档整句输入”类似，但当达到文
档末端时，不允许继续从下个文档中抽取句子。同样地，这里通过增大
批次大小保持和“跨文档整句输入”相对一致的数据吞吐量。在此设置
下不再使用NSP损失。

相关实验结果如表8-3所示。可以看到，在使用NSP任务的情况下，
只使用“句子对输入”相比使用“文本对输入”带来一定的性能损失。
这可能是因为“句子对输入”的长度较短，无法学习到长距离依赖，对

阅读理解任务SQuAD 1.1以及RACE[33]等需要长距离理解的任务带来较大
的影响。

表8-3 NSP任务的有效性对比实验

当对比使用NSP任务（前两行）和不使用NSP任务（后两行）时，可
以看到除了SST-2（情感分类）任务，其他任务的实验结果均表明不使
用NSP任务能够带来下游任务的性能提升。最后，对比“跨文档整句输



入”和“文档内整句输入”的结果可以发现，后者的实验效果更好。然
而，使用“文档内整句输入”的模式会导致批次大小是一个可变量，对
于大规模预训练并不友好。因此，RoBERTa最后采用了“跨文档整句输
入”并舍弃了NSP任务的方案。

3.其他优化

除了以上两点优化，RoBERTa还引入了更多的预训练数据、使用了
更大的批次、更长的预训练步数和更大的BPE词表。

（1）更多的预训练数据。在原始BERT中，预训练数据采用的是
BookCorpus和英文维基百科数据，总计约16 GB的文本文件。在RoBERTa
中，进一步将预训练数据的规模扩展至160 GB，是BERT的10倍。
RoBERTa的预训练数据共包含5个数据来源，其相关描述如表8-4所示。

表8-4 RoBERTa使用的预训练数据

（2）更大的批次及更长的预训练步数。在原始BERT中，采用的预
训练批次大小为256，并训练了1M步。在RoBERTa中，进一步探索了更大
的批次以及更长的训练步数能否带来进一步性能提升。相关结果如表8-
5所示。

表8-5 不同批次大小、训练步数的性能表现

可以看到，随着批次大小的增大，不论是在开发集上的困惑度
（PPL）还是在实际的下游任务（MNLI-m、SST-2）上均有一定的性能提



升。由于预训练通常需要花费很多时间，在计算资源充裕的情况下，使
用更大的批次能够有效减少训练时长。同时，当固定批次大小并增加训
练步数后，也能得到更好的实验结果。基于以上实验结果，最终
RoBERTa采用了8K的批次大小，并且进一步将训练步长加大至500K。

（3）更大的词表。在原始BERT中，采用了一个30K大小的

WordPiece[34]词表，这是一种基于字符级别（Char-level）的BPE[35]词
表。这种词表的一个弊端是，如果输入文本无法通过词表中的
WordPiece子词进行拼接组合，则会映射到“unknown”这种未登录词标
识。因此，RoBERTa模型使用了SentencePiece分词器，并且将词表大小
扩大至50K。采用SentencePiece这种字节级别（Byte-level） BPE词表
的好处是能够编码任意输入文本，因此不会出现未登录词的情况。

例如，这里使用英文BERT和RoBERTa词表对输入文本进行分词。输
入文本中包含英文、德文、中文和日文。

应用BERT中的分词器进行分词，其结果如下所示。可以看到属于拉
丁语系的英文和德文的分词结果均未出现未登录词的情况。而对于中文
和日文的部分词汇出现词表中无法映射的未登录词。

应用RoBERTa中的分词器进行分词，其结果如下所示。由于
SentencePiece是字节级别的切分，因此部分单词在切分后不可读（打
印出来呈乱码），这里直接通过判断的形式查看列表中是否包含未登录
词。可以看到列表中所有元素均不包含“[UNK]”，说明所有单词均被



正常映射。

8.1.3 ALBERT

虽然以BERT为代表的预训练语言模型在众多自然语言处理任务中取
得显著的性能提升，但这类模型的参数量相对较大，会占用大量计算资

源。为了解决该问题，Lan等人提出了ALBERT（A Lite BERT）[36]降低
内存的消耗并且提高BERT的训练速度。这里主要包含两项技术：词向量
参数因式分解和跨层参数共享。同时，在 ALBERT 中引入了更加有效
的“句子顺序预测”的预训练任务，取代了BERT中原有的NSP任务。接
下来将对以上三个重要改动进行介绍。

1.词向量因式分解

在以往的BERT以及相关变种模型（如XLNet、RoBERTa等）中，词向
量的维度E和Transformer的隐含层维度H是一样的。然而，这种设计决
策存在两个问题。

从模型设计角度来看，词向量的作用是将输入文本映射到上下文无
关的静态表示中，即输入文本中的每个标记会独立地通过词向量矩阵映
射到一个固定的向量，与其上下文无关。而大量的实验表明，以BERT为
代表的预训练语言模型之所以强大，是因为词向量之上建立的深层
Transformer模型能够充分地学习到每个标记的上下文信息。因此，
ALBERT的作者认为，Transformer的隐含层维度H要远大于词向量维度
E，即H ≫E。

另外，从实用角度来看，词向量矩阵的参数量是词表大小V 乘以词
向量维度E。而在通常情况下，词表大小V 是比较大的。例如，BERT的
词表大小是30K。上文提到，在早期的预训练语言模型的设计中H ≡
E。当通过增大H 提升模型容量时，词向量维度E 也会随之增大，因此
词向量矩阵的参数量也会随之上升。另外，词向量矩阵的更新是比较稀
疏的，参数的利用率并不高。



因此，ALBERT模型引入了词向量因式分解方法解耦合词向量维度E
和Trans-former隐含层维度 H。具体的操作方法也非常简单，只需令
H/= E。但这样做会有一个问题。当H/=E时，词向量不能直接接入后续
的多层Transformer模型中。因此，这里需要引入一个全连接层，将词
向量维度E 映射到Transformer隐含层维度H。引入词向量因式分解后，

词向量部分的计算复杂度从 降低至 。当
Transformer隐含层维度H远大于词向量维度E时，参数量的降幅尤为明
显。

接下来通过一个例子直观地了解这个问题。这里假设 Transformer
的隐含层维度为H=1024，词向量维度为E=128，词表大小为V=30000。在
原始的BERT中，由于H ≡E，词向量矩阵的参数量计算为：

V× E=V× H=30000×1024=30,720,000

当引入词向量因式分解后，词向量矩阵的参数量计算为：

V× E+E× H=30000×128+128×1024=3,971,072

由此可见，在引入词向量因式分解后，词向量矩阵的参数量降低至
原来的约1/8，参数量降幅非常明显。

2.跨层参数共享

在BERT中，多层Transformer的参数是不共享的，即每一层
Transformer都保留自己的参数。而在ALBERT中，引入了跨层参数共享
（Cross-layer Parameter Sharing）机制，使得每一层Transformer的
权重都是一样的。接下来通过一个三层Transformer模型说明跨层参数
共享，如图8-5所示。



图8-5 跨层参数共享示例

可以看到，ALBERT采用了一种类似于“循环”的结构，主体结构部
分实际上只包含一层Transformer实体。通过循环操作，Transformer的
参数得到复用，并且可以实现深层计算（即循环多少次就是多少层）。

这里需要着重提醒的是，跨层参数共享虽然从参数量的角度实现了
模型的压缩，但并不会加快模型的前向计算时间，也不会大幅度减少模
型的内存（或显存）占用。还是以三层Transformer模型为例，规定每
层的基准参数量、磁盘占用、内存占用和前向传播时间为1x，相应对比
结果如表8-6所示。

可以看到，参数量的大小直接影响磁盘占用，因为更少的参数量可
以用更小的文件存储。而内存占用、前向传播时间与有无跨层参数共享
无关。这是因为不论在模型训练还是模型推断时，共享的参数仍然要以
虚拟的形式复制成多份，形成多层 Transformer 结构，内存的占用并
没有减少。同时，模型的输入还是要从Transformer的最底层一步步地
传递到Transformer的最顶层，因此前向传播时间并没有什么变化。

表8-6 跨层参数共享的影响对比

3.句子顺序预测

回顾NSP任务的设计，其正例是由相邻的两个文本片段构成的，即



构成“下一个句子”关系；而负例是将第二段文本替换成随机的文本片
段，即不构成“下一个句子”关系。然而，前面介绍的XLNet、RoBERTa
模型均发现BERT采用的NSP任务并没有想象中的有效。例如，在多数预
训练数据上，NSP任务的准确率可以快速地达到95%以上，说明该任务的
难度较低，无法学习到深层的语义信息。

因此，ALBERT引入了一个新的预训练任务——句子顺序预测
（Sentence Or-der Prediction，SOP）取代BERT中的NSP任务。在SOP
任务中，正例的构成与NSP一致，而负例的构成是直接对调两个文本片
段的位置。这样设计的目的是让模型能够学习到细微的语义差别及语篇
连贯性，相比NSP任务难度更大。

8.1.4 ELECTRA

前面讲到的各种预训练语言模型均是由单一模型构成的。
而ELECTRA（Ef-ficiently Learning an Encoder that Classifies

Token Replacements Accurately）[37]采用了一种“生成器--判别
器”结构，其与生成式对抗网络（Generative Adversarial Net，

GAN）[38]的结构非常相似。ELECTRA的整体模型结构如图8-6所示。

图8-6 ELECTRA的整体模型结构

图8-6中可以看到ELECTRA是由生成器（Generator）和判别器
（Discrimi-nator）串联起来的一个模型。这两个部分的作用如下。

（1）生成器。一个小的MLM，即在 [MASK]的位置预测原来的词；

（2）判别器。判断输入句子中的每个词是否被替换，即使用替换
词检测（Re-placed Token Detection，RTD）预训练任务，取代了
BERT原始的掩码语言模型（MLM）。需要注意的是这里并没有使用下一
个句子预测（NSP）任务。



接下来，结合图8-6中的例子，详细介绍生成器和判别器的建模方
法。

1.生成器

对于生成器来说，其目的是将带有掩码的输入文本x= x1···

xn，通过多层Transformer模型学习到上下文语义表示 h= h1···

hn，并还原掩码位置的文本，即BERT中的MLM任务。需要注意的是，这

里只预测经过掩码的词，即对于某个掩码位置t，生成器输出对应原文

本xt的概率 （ 是词表大小）：

式中， 表示词向量矩阵； 表示原文本xt对应的

隐含层表示。

以图8-6为例，原始句子x=x1x2x3x4x5如下：

the chef cooked the meal

经过随机掩码后的句子如下，记 为所有经过掩码的单

词位置的下标，记xm=m1x2m3x4x5为经过掩码后的输入句子，如下所示。

[MASK] chef [MASK] the meal

那么生成器的目标是将m1还原为x1（即the），将m3还原为x3（即

cooked）。

在理想情况下，即当生成器的准确率为100%时，掩码标记 [MASK]
能够准确还原为原始句子中的对应单词。然而，在实际情况下，MLM的

准确率并没有那么高。如果直接将掩码后的句子xm输入生成器中，将产

生采样后的句子xs：

the chef ate the meal



从上面的例子可以看到，m1通过生成器成功地还原出单词the，

而m3采样（或预测）出的单词是ate，而不是原始句子中的cooked。

生成器生成的句子将会作为判别器的输入。由于通过生成器改写后
的句子中不包含任何人为预先设置的符号（如 [MASK]），ELECTRA通过
这种方法解决了预训练和下游任务输入不一致的问题。

2.判别器

受MLM准确率的影响，通过生成器采样后的句子xs与原始句子有一
定的差别。接下来，判别器的目标是从采样后的句子中识别出哪些单词
是和原始句子x对应位置的单词一样的，即替换词检测任务。上述任务
可以通过二分类方法实现。

对于给定的采样句子xs，通过Transformers模型得到对应的隐含层

表示hD= 。随后，通过一个全连接层对每个时刻的隐含层表示
映射成概率。

式中， 表示全连接层的权重（d表示隐含层维度）；M表示
所有经过掩码的单词位置下标；σ表示Sigmoid激活函数。

假设1代表被替换过，0代表没有被替换过，则生成器采样生成的句
子“the chef ate the meal”对应的预测标签如下，记为y=y1···

yn。
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3.模型训练

生成器和判别器分别使用以下损失函数训练：



最终，模型通过最小化以下损失学习模型参数：

式中，X 表示整个大规模语料库；θG和θD分别表示生成器和判别
器的参数。

注意：由于生成器和判别器衔接的部分涉及采样环节，判别器的损
失并不会直接回传到生成器，因为采样操作是不可导的。另外，当预训
练结束后，只需要使用判别器进行下游任务精调，而不再使用生成器。

4.其他改进

（1）更小的生成器。通过前面的介绍可以发现，生成器和判别器
的主体结构均由BERT组成，因此两者完全可以使用同等大小的参数规
模。但这样会导致预训练的时间大约为单个模型的两倍。为了提高预训
练的效率，在ELECTRA中生成器的参数量要小于判别器。具体实现时会
减小生成器中Transformer的隐含层维度、全连接层维度和注意力头的
数目。对于不同模型规模的判别器，其缩放比例也不同，通常在1/4～
1/2之间。以ELECTRA-base模型为例，缩放比例是1/3。表8-7展示了
ELECTRA-base模型的生成器和判别器的各项参数大小对比。

表8-7 ELECTRA-base模型的生成器和判别器的各项参数大小对比

为什么是减小生成器的大小，而不是判别器的大小？因为上文讲到
生成器只会在预训练阶段使用，而在下游任务精调阶段是不使用的，因
此减小生成器的大小是合理的。

（2）参数共享。为了实现更灵活的建模目的，ELECTRA首先引入了
词向量因式分解方法，通过全连接层将词向量维度映射到隐含层维度。
这一部分的实现与ALBERT中的方法一致，因此不再赘述。由于上面讲
到，ELECTRA使用了一个更小的生成器，因此生成器和判别器之间无法
直接进行参数共享。在ELECTRA中，参数共享只限于输入层权重，其中
包括词向量和位置向量矩阵。



8.1.5 MacBERT

虽然BERT中的掩码语言模型简单易用，但也存在明显的问题。在掩
码语言模型中，通过引入特殊标记 [MASK]表示当前词被掩码。然而在
实际的下游任务中，输入文本中并不会出现 [MASK]标记。这就会导
致“预训练--精调”不一致的问题。图8-7给出了这种现象的一个示
例。为了进行掩码语言模型的学习，图8-7（a）的输入文本中包含掩码
标记 [M]。而在图8-7（b）中，当进行实际的文本分类任务时，模型的
输入是自然文本，不包含掩码标记 [M]。

为了解决“预训练--精调”不一致的问题，哈工大讯飞联合实验室

提出了Mac-BERT[19]。MacBERT中应用了一种基于文本纠错的掩码语言模
型（MLM as cor-rection，Mac）。该方法不需要对现有结构做任何改
动，只需改变掩码方式，因此极大限度地保留了BERT的原始特性，并可
以无缝迁移到任何使用BERT的下游任务精调代码中。MacBERT的整体结
构如图8-8所示。

具体地，MacBERT针对掩码语言模型任务进行了如下修改：

• MacBERT使用整词掩码技术以及N-gram掩码技术选择待掩码的标
记，其中unigram至4-gram的概率分别为40%、30%、20%和10%；

• 为了解决掩码标记 [MASK] 在下游任务中不会出现的问题，在预
训练阶段，MacBERT使用相似词替换[MASK]标记。当实际操作时，使用
同义词词典获取待掩码单词的相似词。当N-gram掩码时，对N-gram中的
每个词均进行相似词替换。在少数情况下，当相似词不存在时，使用词
表中的随机词进行替换；

图8-7 “预训练--精调”不一致问题示例



图8-8 MacBERT模型的整体结构

• 与原版BERT类似，MacBERT对输入序列总长度15%的标记进行掩
码，在80%的情况下会替换为相似词，在10%的情况下会替换为随机词，
在10%的情况下则不进行任何替换（负样本）。

表8-8给出了不同掩码方式的对比示例。

除此之外，由于ALBERT[36]在众多自然语言处理任务上获得了显著
的性能提升，MacBERT采用了其中的句子顺序预测任务替换BERT中的下
一个句子预测任务。关于句子顺序预测任务可参考8.1.3节中的介绍。

表8-8 不同掩码方式的对比示例

8.1.6 模型对比

最后，通过表8-9对比不同预训练语言模型之间的联系与区别。

表8-9 预训练语言模型之间的联系与区别



8.2 长文本处理

8.2.1 概述

以自注意力机制为核心的 Transformer 模型是各种预训练语言模
型中的主要组成部分。自注意力机制能够构建序列中各个元素之间的上
下文关联程度，挖掘深层次的语义信息。然而，自注意力机制的时空复

杂度为 ，即时间和空间消耗会随着输入序列的长度呈平方级增
长。这种问题的存在使得预训练语言模型处理长文本的效率较低。

传统处理长文本的方法一般是切分输入文本，其中每份的大小设置
为预训练语言模型能够单次处理的最大长度（如512）。最终将多片文
本的决策结果进行综合（如对分类结果进行投票）或者拼接（如序列标
注或生成任务）得到最终结果。然而，这种方法不能很好地构建文本块
之间的联系，挖掘长距离文本依赖的能力较弱。因此，更好的方法还是
需要从根本上提高预训练语言模型单次能够处理的最大文本长度，从而
能够更加充分地利用自注意力机制。

接下来将介绍四个有代表性的擅长处理长文本序列的 Transformer
变种，即Transformer-XL、Reformer、Longformer和BigBird。

8.2.2 Transformer-XL

前面介绍到，Transformer中处理长文本的传统策略是将文本切分
成固定长度的块，并单独编码每个块，块与块之间没有信息交互。图8-
9给出了块长度为4的一个示例。可以看到在训练阶段，Transformer分
别对第一块中的序列x1、x2、x3、x4与第二块中的序列x5、x6、x7、x8进

行建模。而在测试阶段，由于每次处理的最大长度为4，当模型在处理



序列x2、x3、x4、x5时，无法构建与历史x1的关系。另外，由于需要以

滑动窗口的方式处理整个序列，所以这种方法的效率也非常低。

图8-9 Transformer中处理长文本的传统方法

为了优化对长文本的建模，Transformer-XL[28]提出了两种改进策
略——状态复用的块级别循环（Segment-level Recurrence with
State Reuse）和相对位置编码（Relative Positional Encodings）。
接下来针对这两种改进策略进行介绍。另外，值得一提的是，在8.1.1
节介绍的XLNet采用了Transformer-XL作为主体结构。



图8-10 Transformer-XL中处理长文本的方法

1.状态复用的块级别循环

假设两个连续的长度为n的块分别为sτ= xτ，1···xτ，n和sτ+1=

xτ+1，1···xτ+1，n，第τ 块在第l层Transformer的隐含层输出为

（d为隐含层维度大小）。计算第τ+1块在第l层

Transformer的隐含层输出 ：

式中，函数SG（·）表示停止梯度传输；操作符◦表示沿长度维度
进行拼接；W 表示全连接权重。与传统Transformer的主要不同点在



于，键 和值 依赖于扩展的上下文信息 以及上一个块

的缓存信息 。

这种状态复用的块级别循环机制应用于语料库中每两个连续的片
段，本质上是在隐含状态下产生一个片段级的循环。因此，在这种机制
下，Transformer利用的有效上下文可以远远超出两个块。需要注意的

是， 和 之间的循环依赖性使得存在向下一层的计算依赖，
这与传统的循环神经网络（RNN）中的同层循环机制（即只存在相同层
之间的循环）是不同的。因此，最大可能的依赖长度随块的长度n和层

数L呈线性增长，即 ，如图8.10（b）中的阴影部分所示。这种
机制和RNN中常用的随时间反向传播机制（Back Propagation Through

Time，BPTT）[39]类似。然而，在这里是将整个序列的隐含层状态全部
缓存，而不是像BPTT机制中只会保留最后一个状态。

另外，这种设计除了能够处理更长的文本序列，还能加快测试速
度。作者通过一系列的实验表明，Transformer-XL相比传统
Transformer，能够在测试阶段达到1800倍以上的加速。

2.相对位置编码

虽然状态复用的块级别循环技术能够将不同块之间的信息联系起
来，在实际应用中还存在一个非常重要的问题：如何区分不同块中的相
同位置？采用传统Transformer中的绝对位置编码方法是不可行的，其
原因可通过下式说明：

式中， 表示块sτ对应的词向量；vp表示位置向量；f

表示变换函数。

可以看到对于不同的块，使用的位置向量是一样的。例如，对于第
τ 块中的xτ，i和第τ+1块中的xτ+1，i的位置信息是完全相同的，而这



显然是不合理的。

为了解决这个问题，Transformer-XL引入了相对位置编码策略。位
置信息的重要性主要体现在注意力矩阵的计算上，用于构建不同词之间
的关联关系。应用相对位置编码后，第i个词与第j个词的注意力值ai，j

为：

式中，W 和 表示可训练的权重； 表示词xi对应的词向

量； 表示相对位置矩阵（N表示最大编码长度），是一个不
可训练的正弦编码矩阵，其第i行表示相对位置间隔为i的位置向量。接
下来针对上式中的各个部分进行介绍。

• 基于内容的相关度（a）：计算查询xi与键xj的内容之间关联信

息；

• 内容相关的位置偏置（b）：计算查询xi的内容与键xj的位置编

码之间的关联信息，Ri−j表示两者的相对位置信息，取R中的第i−j行；

• 全局内容偏置（c）：计算查询xi的位置编码与键xj的内容之间

的关联信息；

• 全局位置偏置（d）：计算查询xi与键xj的位置编码之间关联信

息。

感兴趣的读者可以进一步参考原文献[28]了解更多技术细节。

8.2.3 Reformer

Reformer[40]主要引入了局部敏感哈希注意力和可逆Transformer技
术，有助于减少模型的内存占用，进一步提升了模型对长文本的处理能
力。



1.局部敏感哈希注意力

首先，在介绍局部敏感哈希注意力之前，需要回答两个关键问题，
这将成为Reformer的设计准则。

（1）单独计算查询和键的必要性。在传统Transformer中，输入向
量通过三组不同的全连接层分别映射到查询、键和值，并计算查询向量
和键向量之间的注意力值，最终将注意力值和值向量加权求和得到输出
向量。那么，查询向量（Q）和键向量（K）能否合二为一？即只使用一
个全连接层得到查询（或键），另一个全连接层得到值。作者通过实验
证实，这种查询和键相同的Transformer与传统的Transformer相比并没
有太大的性能差异。因此，在Reformer中采用了QK 共享的
Transformer，减少了注意力机制中的一部分计算。

（2）全局注意力计算的必要性。在传统Transformer中，注意力矩
阵的维度是N× N，即是一个以序列长度N 为边长的方阵。也就是说，
注意力矩阵的计算复杂度是随着序列长度N呈平方级增长的，而这会极
大地限制模型对长文本的处理能力。

那么是否每个单词之间都需要计算注意力值？可以从两方面回答这
个问题。首先，每个词与序列中其他词之间的关联程度并非均匀分布，
而是只会对其中一小部分的单词具有较强的关联关系。另外，实际上在
注意力机制中更关心的是经过Softmax函数激活的值，而不是激活之前
的值。通过Softmax函数得到的结果主要取决于数值较大的若干元素，
因此并不需要将所有的词都参与到注意力的计算中。如果只计算那些与
当前查询关联度最高的n个词，就可以极大地降低注意力的计算量。

（3）局部敏感哈希。虽然通过解答上面的问题，找到了降低模型
复杂度的方法，但高效地计算与每个词关联度最高的n个词并不简单。
因此，Reformer中引入了局部敏感哈希技术（Locality-Sensitive
Hashing，LSH）解决高维空间下寻找最近邻元素的问题。局部敏感哈希
的目标是设计一个哈希函数h（x），使在向量x周围的向量以较高概率
具有一样的哈希值，而较远的向量具有不一样的哈希值。特别地，在
Reformer中只要求满足“相近的向量以较高概率具有一样的哈希值”这

一个条件。根据经典的LSH方法[41]，为了得到b个哈希值，定义一个随

机矩阵 （d表示隐含层维度），并定义哈希函数：



式中，[；]表示向量拼接操作。

图 8-11给出了一个在二维空间内的局部敏感哈希的示例。首先，
将高维空间的两个向量x， y在二维空间内做投影，得到一组节点x，
y。图中给出了两种情况：其中一组的夹角较大，表示两个向量之间的
相似度较低；而另一组的夹角较小，表示两个向量之间的相似度较高。
图中的正方形区域被四种颜色分割成四个区域（即四个桶）。以随机角
度θ0（可以看作一次哈希）旋转节点x， y，可以看到夹角较大的一组

x， y分别落到{0， 3}区域，而夹角较小的一组均落到0区域。接下
来，继续旋转随机角度θ1和θ2。可以看到，夹角较大的一组节点每次

都会落到不同的区域中，而夹角较小的一组会落到相同的区域中，表明
相似的节点容易被分到同一个区域中。也就是说，经过局部敏感哈希，
可以将关联性较强的键，以较大概率放入相同的桶中。那么根据之前的
分析，只需要对桶内所有的元素进行注意力的计算就能够达到近似完整
注意力机制的目的，极大地降低了注意力计算的复杂度。

图8-11 局部敏感哈希在二维空间中的示例

（4）注意力计算。在实际应用中，通常使用并行计算加快模型的
计算速度。不过，每个桶内包含的向量数目可能不尽相同，这里并不能
只计算单个桶内的注意力，还需要多加入一个桶参与计算。

图8-12给出了一个简化了的局部敏感哈希注意力的计算示例。位于
最上方的第一行是整个输入序列，这里可以认为是查询向量，也可以认
为是键向量（QK共享的Transformer）。接下来，利用局部敏感哈希对



向量进行分桶（同颜色表示相同的桶，具有相同的哈希值）。下一步通
过桶排序将相同桶号的向量放在一起，并按照预先设置的块大小（这里
是4）进行分块（Chunk）。可以看到第1个块和第4个块内的元素都享有
相同的哈希值，而第2个块和第3个块包含了两种不同的哈希值。最后进
入注意力计算的环节，每个元素只会与当前和前一个块中具有相同哈希
值的元素计算注意力。

图8-12 局部敏感哈希注意力的计算示例

（5）多轮局部敏感哈希。哈希的过程实际上是信息压缩的过程。
前面介绍的局部敏感哈希在理想情况下能够将相似的向量放入相同的桶
（相同的哈希）中。但实际上局部敏感哈希会以小概率出现失败，使得
相似的向量存放到不同的桶内。因此，Reformer通过使用多轮局部敏感
哈希（Multi-round LSH）进一步降低错误率。作者通过一组实验验证
了这种方法的有效性。在训练阶段使用完整注意力（即不存在任何计算
近似），而在测试阶段使用单轮局部敏感哈希计算，注意力的准确率仅
能够达到52.5%。而采用多轮局部敏感哈希计算注意力后，2轮能达到
76.9%，而8轮能够达到94.8%。

2.可逆Transformer

为了进一步降低模型的内存占用空间，Reformer中还引入了可逆
Transformer技术。该技术受到可逆残差网络（Reversible Residual

Networks，RRN）[42]的启发而设计，其主要思想是任意一层的激活值都



可以通过后续层的激活值进行还原。因此，当模型在进行后向梯度计算
时，不再需要保存每一个中间层的激活值，只需要通过从顶层到底层的
可逆计算就能够获得相应的值。由此可见，可逆残差网络是一种用时间
换空间的思想。常规的残差网络定义为：

式中， 表示残差函数。为了实现可逆残差网络，需要将输入X
和输出Y 分别分解为（X1， X2）和（Y1， Y2），并通过下式进行变

换。

式中， 和G表示残差函数。当反向传播时，可以将式（8-23）改
写为下式，即通过减去残差部分获得输入。

图8-13给出了式（8-23）和式（8-24）计算的直观展示。

图8-13 可逆残差网络计算示意图

基于以上思想，可将可逆残差网络应用到Transformer模型中，如

下式所示。这里假设 是注意力层，而 是全连接层。需要注意的

是，这里的残差块去掉了层归一化（Layer Normalization，LN）[43]操
作。

除此之外，在可逆Transformer中还引入了分块机制，进一步降低
了前馈神经网络的内存占用。感兴趣的读者可以阅读文献[40]了解更详
细的技术细节。



8.2.4 Longformer

艾伦人工智能研究院（AI2）的研究人员提出了一种基于稀疏注意

力机制的模型——Longformer[44]。Longformer将输入文本序列的最大
长度扩充至4096，同时提出了三种稀疏注意力模式（Sparse Attention
Pattern）降低计算复杂度，分别是滑动窗口注意力、扩张滑动窗口注
意力和全局注意力，如图8-14所示。接下来详细介绍这三种注意力模
式。

图8-14 Longformer模型不同的自注意力模式对比

1.滑动窗口注意力

在多数情况下，当前词只会与其相邻的若干个词存在一定的关联，
因此对所有的词进行自注意力的计算存在一定的信息冗余。在
Longformer中引入了一种固定长度的滑动窗口注意力机制，使得每个词
只会与其相邻的k个词（以当前词为中心，左右窗口长度均为k/2）计算
注意力。滑动窗口注意力机制可以将自注意力计算的时空复杂度

降低至 ，即与输入序列的长度n呈线性关系。

这种滑动窗口机制与卷积神经网络类似。在卷积神经网络中，虽然
初始的卷积核可能很小，但可以通过多个卷积层的叠加，最终获得整个
图像的特征信息。同理，虽然通过上述滑动窗口方法计算出的注意力值
是局部的，但可以通过多层Transformer模型将局部信息叠加，从而获
取到更长距离的依赖信息。具体地，在一个L层的Transformer模型中，
最顶层的感受野（Receptive Field）是L× k（此处假设每一层的窗口
大小 k 是固定的）。图8.14（b）给出了一个窗口大小为6的滑动窗口
示例，即每个单词（对角线）只会与其前3个和后3个之间的词计算注意
力。



2.扩张滑动窗口注意力

在滑动窗口中，增加窗口大小k可以使当前词利用到更多上下文信
息，但也会增加计算量。为了解决上述问题，Longformer还引入了一种
扩张滑动窗口方法。该方法借鉴了卷积神经网络中的扩张卷积

（Dilated Convolution）[2]。在扩张滑动窗口中，并不是利用窗口内
所有的上下文单词信息，而是引入了扩张率（Dilation Rate）d，即每
间隔d−1采样一次。在一个L层的Transformer模型中，给定一个固定的
扩张率d和窗口大小k，最顶层的感受野是L×d×k。

这里结合图8.14（c）理解扩张滑动窗口机制。首先，从计算复杂
度来看，窗口大小为12（即扩张率d=2）的扩张滑动窗口方法与窗口大
小为6的普通滑动窗口方法是相同的，即每个词只会与前后各3个词计算
注意力（深色部分）。而由于扩张滑动窗口采用了间隔采样方法，每个
词可以利用到更长的上下文信息，最远可以利用距离当前词6个单位的
单词。

3.全局注意力

在预训练语言模型中，对于不同类型的任务，其输入表示也是不同
的。例如，在掩码语言模型中，模型利用局部上下文信息预测被掩码的
单词是什么；在文本分类任务中，通常使用[CLS]位的表示预测类别；
对于问答或阅读理解等任务来说，将问题和篇章拼接后，通过多层
Transformer学习两者之间的联系。

然而，前面提出的滑动窗口方法无法学习到任务特有的表示模式。
因此，Long-former引入了全局注意力方法特别关注一些预先选定的位
置，使这些位置能够看到全局信息。图8.14（d） 给出了一个全局注意
力和滑动窗口结合的例子。可以看到，对于序列中的第1、2、6和16位
的单词，其整行整列的信息都可以被看到。这意味着该词可以利用整个
序列的信息，同时整个序列在计算注意力时都能看到当前的词。因此，
全局注意力机制是一个对称的操作。

当实际应用时，可以根据任务特点设置全局注意力要关注的位置。
例如，在文本分类任务里，可以将[CLS]设置为“全局可见”；在问答
类任务里，可以将所有的问题中的单词设置为“全局可见”。由于全局
可见的单词数量远小于序列长度，局部窗口（滑动窗口）和全局注意力



整体的计算复杂度仍然是 。

8.2.5 BigBird

BigBird[45]进一步优化了Transformer对长文档的处理能力，也同
样借鉴了稀疏注意力的方法，如图8-15所示。

• 随机注意力：针对每一个词，随机选取r个词参与注意力的计
算；

• 滑动窗口注意力：与Longformer相同，即只利用当前词周围的k
个词计算注意力；

• 全局注意力：与Longformer基本相同，即从输入序列中选择g个
词，使其能够见到所有词，反之亦然。这种设定称为内部Transformer
组建（Internal Transformer Construction，ITC）模式。与
Longformer不同之处在于，还可以选择外部Transformer组建
（External Transformer Construction，ETC）模式，在输入序列中插
入额外的全局标记，使其能够见到所有词，反之亦然；

• BigBird：结合了以上三种不同的注意力模式。

图8-15 BigBird模型不同的自注意力模式对比

除此之外，BigBird还通过理论分析证明了稀疏Transformer的有效
性，证明BigBird是序列建模函数的通用近似方法，并且是图灵完备的
（Turing Complete）。更详细的技术细节可参考文献[45]进一步了
解。

最后，为了展示在长序列上的建模优势，除了常规的自然语言处理



任务，研究人员还将BigBird用在基因序列（如DNA）的上下文表示抽取
上。通过实验表明，BigBird在启动子区域预测（Promoter Region
Prediction）以及染色质轮廓预测（Chromatin Profile Prediction）
任务上获得了显著的性能提升。

8.2.6 模型对比

在本节的最后，通过表8-10对比一些面向长文本序列处理的
Transformer变种模型（也被称为X-former）。除了本节介绍的模型，
表中还添加了其他类似的模型供读者参考。由于篇幅有限，读者可阅读
相应文献了解技术细节。同时，也推荐读者阅读文献[46]，从而系统了
解这些模型。

8.3 模型蒸馏与压缩

8.3.1 概述

预训练语言模型虽然在众多自然语言任务中取得了很好的效果，但
通常这类模型的参数量较大，很难满足实际应用中的时间和空间需求。
图8-16给出了常见预训练语言模型参数量的发展趋势。可以看到，预训
练语言模型的参数量呈加速增大的趋势。这使得在实际应用中使用这些
预训练语言模型变得越来越困难。

表8-10 面向长文本序列处理的Transformer变种模型对比



图8-16 预训练语言模型参数量趋势[54]

因此，除了优化预训练语言模型的预测精度，如何能够降低预训练
语言模型参数量以及加快运行效率也是非常重要的研究方向。目前主流
的预训练语言模型压缩方法是知识蒸馏技术。知识蒸馏（Knowledge
Distillation，KD）是一种常用的知识迁移方法，通常由教师
（Teacher）模型和学生（Student）模型构成。知识蒸馏就像老师教学
生的过程，将知识从教师模型传递到学生模型，使得学生模型的性能尽
量与教师模型接近。虽然知识蒸馏技术并不要求学生模型的体积（或参
数量）一定要比教师模型小，但在实际应用过程中，通常使用该技术将
较大的模型压缩到一个较小的模型，同时基本保持原模型的效果。

本节介绍3种典型的基于知识蒸馏的预训练语言模型，其中包括
DistilBERT、TinyBERT和MobileBERT。为了方便读者快速地实现模型的
压缩与加速，最后还将介绍一个面向自然语言处理领域的知识蒸馏工具
包TextBrewer，并结合相关代码介绍其使用方法。

8.3.2 DistilBERT

DistilBERT[54] 应用了基于三重损失（Triple Loss）的知识蒸馏
方法。相比BERT 模型，DistilBERT 的参数量压缩至原来的40%，同时
带来 60%的推理速度提升，并且在多个下游任务上达到BERT模型效果的
97%。接下来，针对Dis-tilBERT使用的知识蒸馏方法进行介绍。

1.基本结构



DistilBERT的基本结构如图8-17所示。学生模型（即DistilBERT）
的基本结构是一个六层 BERT 模型，同时去掉了标记类型向量（Token-

type Embedd-ing）[3]和池化模块（Pooler）。教师模型是直接使用了
原版的BERT-base模型。由于教师模型和学生模型的前六层结构基本相
同，为了最大化复用教师模型中的知识，学生模型使用了教师模型的前
六层进行初始化。DistilBERT模型的训练方法与常规的BERT训练基本一
致，只是在计算损失函数时有所区别，接下来对这部分展开介绍。另外
需要注意的是，DistilBERT只采用了掩码语言模型（MLM）进行预训
练，并没有使用预测下一个句子预测（NSP）任务。

图8-17 DistilBERT的基本结构

2.知识蒸馏方法

为了将教师模型的知识传输到学生模型，DistilBERT采用了三重损
失：有监督MLM损失、蒸馏MLM损失和词向量余弦损失，如下所示。

（1）有监督MLM损失。利用掩码语言模型训练得到的损失，即通过
输入带有掩码的句子，得到每个掩码位置在词表空间上的概率分布，并
利用交叉熵损失函数学习。MLM任务的训练方法已在7.3.3节介绍过，这
里不再赘述。有监督MLM损失的计算方法为：



式中，yi表示第i个类别的标签；si表示学生模型对该类别的输出

概率。

（2）蒸馏MLM损失。利用教师模型的概率作为指导信号，与学生模
型的概率计算交叉熵损失进行学习。由于教师模型是已经过训练的预训
练语言模型，其输出的概率分布相比学生模型更加准确，能够起到一定
的监督训练目的。因此，在预训练语言模型的知识蒸馏中，通常将有监
督MLM称作硬标签（Hard Label）训练方法，将蒸馏MLM称作软标签
（Soft Label）训练方法。硬标签对应真实的MLM训练标签，而软标签
是教师模型输出的概率。蒸馏MLM损失的计算方法为：

式中，ti表示教师模型对第i个类别的输出概率；si表示学生模型

对该类别的输出概率。对比式（8-27）和式（8-28）可以很容易看出有
监督MLM损失和蒸馏MLM损失之间的区别。需要注意的是，当计算概率ti
和si时，DistilBERT采用了带有温度系数的Softmax函数。

式中，Pi表示带有温度的概率值（ti和si均使用该方法计算）；zi
和zj表示未激活的数值；T 表示温度系数。在训练阶段，通常将温度系

数设置为T=8。在推理阶段，将温度系数设置为T=1，即还原为普通的
Softmax函数。

（3）词向量余弦损失。词向量余弦损失用来对齐教师模型和学生
模型的隐含层向量的方向，从隐含层维度拉近教师模型和学生模型的距
离，如下所示：

式中，ht和hs分别表示教师模型和学生模型最后一层的隐含层输
出。

8.3.3 TinyBERT



TinyBERT[55]主要使用了额外的词向量层蒸馏和中间层蒸馏进一步
提升知识蒸馏的效果。TinyBERT利用两段式蒸馏方法，即在预训练阶段
和下游任务精调阶段都进行知识蒸馏，进一步提升了下游任务的性能表
现。TinyBERT（4层）可以达到教师模型（BERT-base）效果的96.8%，
而其参数量缩减至教师模型的13.3%，并且仅需要教师模型10.6%的推理
时间。

1.知识蒸馏方法

TinyBERT针对预训练语言模型的不同部分采用了不同的蒸馏方法，

具体可分为三部分：词向量层蒸馏、中间层蒸馏[4]和预测层蒸馏。为了
便于介绍，假设教师模型为12层的BERT-base，学生模型为4层BERT。

（1）词向量层蒸馏。首先，TinyBERT增加了对词向量层的蒸馏损

失，计算学生模型的词向量vs和教师模型的词向量vt之间的均方误差损
失。

式中，MSE（·）表示均方误差损失函数；We表示全连接层权重，
用于将学生模型的词向量维度变换为教师模型的词向量维度，以便计算
损失。

（2）中间层蒸馏。在Transformer的主体部分，TinyBERT引入了隐
含层蒸馏损失和注意力蒸馏损失，统称为中间层匹配损失。这样可以阶
段性地将教师模型的知识传输到学生模型，从而起到更好的知识蒸馏效
果，如图8-18所示。

由于教师模型和学生模型的层数并不一致，为了计算教师模型和学
生模型的中间层匹配损失，需要设计一个映射函数g（i）= j，将学生
模型的第i层和教师模型的第j层联系起来。TinyBERT使用了简单的方法
进行匹配，将映射函数定义为g（i）=3i，即每3层进行一次映射。也就
是说学生模型的第{1，2，3，4}层分别映射到教师模型的{3，6，9，
12}层。

有了映射关系后，就能计算中间层的匹配损失了。具体地，隐含层



蒸馏损失是计算学生模型第i层的隐含层输出 与教师模型第j层的隐

含层输出 之间的均方误差损失。

式中，MSE（·）表示均方误差损失函数；Wh表示全连接层权重，
用于将学生模型的隐含层维度变换为教师模型的隐含层维度，以便计算
损失。

图8-18 TinyBERT中间层蒸馏方法示意图

同理，注意力蒸馏损失是计算学生模型第i层的注意力矩阵 与

教师模型第j层的注意力矩阵 之间的均方误差损失。注意力矩阵是
一个大小为n×n的方阵，其中 n是输入序列长度。需要注意的是，由于
在Transformer中使用的是多头自注意力机制，这里需要将多个注意力
头对应的蒸馏损失进行平均。另外，这里使用的注意力矩阵未经过
Softmax函数激活，如下所示。



式中，K表示注意力头数。

最终，中间层匹配损失 是所有满足映射函数g（i）=j的隐含

层蒸馏损失 以及注意力蒸馏损失 之和。

（3）预测层蒸馏。与DistilBERT类似，TinyBERT也使用了软标签
蒸馏方法，将教师模型的概率作为软标签，并利用交叉熵损失函数进行
学习。

式中，ti表示教师模型输出的概率；si表示学生模型输出的概

率；Pi表示带有温度的概率值（ti和si均使用该方法计算）；T 表示温

度系数。需要注意的是，在TinyBERT中，温度系数设置为T=1，也就是
退化为常规的Softmax函数。

2.两段式蒸馏

TinyBERT引入了两段式蒸馏方法，即在预训练阶段和下游任务精调
阶段均进行蒸馏，如图8-19所示。

图8-19 TinyBERT的两段式蒸馏方法



（1）通用蒸馏。在预训练阶段，知识蒸馏能够将教师模型中丰富
的知识传输到学生模型，提升学生模型的通用表示能力。通用蒸馏使用
了未在下游任务上精调但经过预训练的BERT作为教师模型，并且利用大
规模无标注语料训练TinyBERT （学生模型）。需要注意的是，在这一
阶段，TinyBERT并没有使用预测层蒸馏损失，因为通用蒸馏的重点是学
习BERT主体部分的表示能力。

（2）特定任务蒸馏。在下游任务精调阶段，知识蒸馏进一步将下
游任务数据中的领域知识传输到学生模型，提升学生模型在特定任务上
的表示能力，使学生模型与目标任务更加契合。特定任务蒸馏使用了经
过下游任务精调的BERT作为教师模型，并且利用数据增广后的下游任务
数据进一步训练TinyBERT，使模型与目标任务更加匹配。

（3）数据增广。为了提升特定任务的蒸馏效果，TinyBERT 引入了
数据增广的方法进一步扩充下游任务数据。主要思路是将输入文本中的
部分词汇通过BERT 和 GloVe 生成的词向量计算其最相似的词并进行替
换。更详细的数据增广流程可以参考文献[55]。

8.3.4 MobileBERT

MobileBERT[56]可以看作一个“瘦身”后的BERT-large模型，使用
了瓶颈结构（Bottleneck Structure），并且在自注意力和前馈神经网
络的设计上也有一定的改进。MobileBERT能够达到教师模型BERT-base

99.2%的性能效果（以GLUE数据集[32]为测试基准），推理速度快5.5
倍，参数量降低至23.2%。

MobileBERT在BERT的基础上进行了若干结构改进，例如去掉层归一
化、使用ReLU激活函数等，这里不再展开介绍。感兴趣的读者可以阅读
文献[56]进一步了解模型结构细节。下面重点介绍MobileBERT采用的知
识蒸馏方法。

1.知识蒸馏方法

MobileBERT的损失函数由四部分组成：有监督MLM损失、有监督NSP
损失、隐含层蒸馏损失和注意力蒸馏损失。



式中，0≤α≤1表示调节损失函数权重的超参数，在MobileBERT中
取α=0.5。

其中，有监督MLM损失和有监督NSP损失与原版BERT的实现是一样
的。隐含层蒸馏损失则与TinyBERT一致，计算教师模型和学生模型各层
隐含层输出之间的均方误差损失。需要注意的是，由于MobileBERT（学
生模型）与教师模型的层数一致（均为12层），这里不需要设计映射函
数，只需要将教师模型和学生模型的每一层进行一一对应即可。注意力
蒸馏损失也与TinyBERT类似，但在MobileBERT中使用的是基于KL散度的
方法，而不是TinyBERT中的均方误差损失。

式中，K 表示注意力头数；KL（·）表示KL散度函数。与MSE损失
函数不同的是，KL散度并不是对称的，这一点需要特别注意。
MobileBERT模型的整体结构如图8-20所示。

2.渐进式知识迁移

MobileBERT使用了一种渐进式知识迁移（Progressive Knowledge
Transfer）策略。图8-21给出了一个示例，其中教师模型是3层
Transformer结构，每种颜色的浅色版本表示参数冻结，即参数不参与
训练。

可以看到在渐进式知识迁移中，词向量层和最终分类输出层的权重
是直接从教师模型拷贝至学生模型的，始终不参与参数更新。而对于中
间的Transformer层，采用了渐进的方式逐步训练。首先，学生模型开
始学习教师模型的第一层。接下来，学生模型继续学习教师模型的第二
层，而此时学生模型的第一层权重是不参与更新的。依此类推，当学生
模型学习教师模型的第i层时，学生模型中所有小于i层的权重均不参与
更新。论文作者通过实验证明这种渐进式知识迁移方法显著优于其他直
接蒸馏方法，感兴趣的读者可以阅读文献[56]了解更多细节。



图8-20 MobileBERT模型的整体结构

图8-21 MobileBERT渐进式知识迁移策略示意图

8.3.5 TextBrewer

1.概述

为了方便研究人员快速实现模型的知识蒸馏，哈工大讯飞联合实验

室推出了一款基于PyTorch的知识蒸馏工具包TextBrewer[57]。它适配于
多种模型结构并适用于多种自然语言处理中的有监督学习任务，如文本
分类、阅读理解和序列标注等。TextBrewer提供了简单一致的工作流
程，方便用户快速搭建蒸馏实验，并且可根据用户需求灵活配置与扩
展。使用TextBrewer在多个自然语言处理任务上蒸馏BERT模型，仅需要



进行简单的配置即可取得媲美甚至超越公开的BERT蒸馏模型的效果。

TextBrewer 提供了简单便捷的 API 接口、一系列预定义的蒸馏方
法与策略和可定制的配置选项。经过实验验证，TextBrewer在多个自然
语言处理典型任务上对 BERT 模型进行蒸馏，能够取得相比其他公开的
知识蒸馏方法更好的效果。TextBrewer的主要特点包括如下几点。

（1）适用范围广。支持多种模型结构（如Transformer、RNN）和
多种自然语言处理任务（如文本分类、阅读理解和序列标注等）；

（2）配置方便灵活。知识蒸馏过程由配置对象
（Configurations）配置。通过配置对象可自由组合多种知识蒸馏方
法；

（3）多种蒸馏方法与策略。TextBrewer不仅提供了标准和常见的
知识蒸馏方法，也包括了计算机视觉（CV）领域中的一些蒸馏技术。通
过实验证实，这些来自计算机视觉的技术在任务中同样非常有效；

（4）简单易用。为了使用TextBrewer蒸馏模型，用户无须修改模
型部分的代码，并且可复用已有训练脚本的大部分代码，如模型初始
化、数据处理和任务评估，仅需额外完成一些准备工作。

2.架构与设计

TextBrewer的整体设计框架如图8-22所示，主要分为
Configurations、Distillers和Utilities三部分。其中，Distillers
用于执行实际的知识蒸馏工作；Configurations为Distillers提供必要
的配置；Utilities中包含一些辅助的功能，如模型参数统计等。

图8-22 TextBrewer整体设计框架



（1） Distillers。Distillers是TextBrewer的核心，用来训练蒸
馏模型、保存模型和调用回调函数。目前，工具包中提供了五种
Distillers。这些Distillers的调用方法相同，方便相互替换。

• BasicDistiller：进行最基本的知识蒸馏；

• GeneralDistiller：相比于BasicDistiller，额外提供中间层损
失函数（Interme-diate Loss Functions）的支持；

• MultiTeacherDistiller：多教师单任务知识蒸馏，将多个同任
务的教师模型蒸馏到一个学生模型；

• MultiTaskDistiller：多教师多任务知识蒸馏，将多个不同任务
的教师模型蒸馏到一个学生模型；

• BasicTrainer：用于在有标签数据上有监督地训练教师模型。

（2） Configurations。Distillers训练或蒸馏模型的具体方式由
两个配置对象——TrainingConfig和DistillationConfig指定。

• TrainingConfig：定义了深度学习实验的通用配置，如日志目录
与模型储存目录、运行设备、模型储存频率和评测频率等；

• DistillationConfig：定义了和知识蒸馏密切相关的配置，如知
识蒸馏损失的类型、知识蒸馏温度、硬标签损失的权重、调节器和中间
隐含层状态损失函数等。中间隐含层状态损失函数用于计算教师和学生
模型的中间隐含层状态之间的匹配损失，可以被自由地组合配置；调节
器用于动态调整损失权重和温度。

为了方便使用，TextBrewer包含了一些预定义的策略实现。例如对
于损失函数，提供了隐含层匹配损失、余弦相似度损失、FSP矩阵损

失[58]和NST损失[59]等多种损失函数。配置对象均可用JSON文件进行初
始化。

3.代码实现

下面介绍如何使用TextBrewer进行知识蒸馏。在正式开始之前，需
要完成一些准备工作。首先，在有标签数据集上训练教师模型。这一步



可借助BasicTrainer完成。然后，定义和初始化学生模型。可使用预训
练模型初始化或随机初始化。最后，构建数据迭代器（dataloader）、
学生模型的优化方法（Optimizer）和学习率调节器（Learning rate
scheduler）。

准备工作完成后，参照以下步骤即可开始蒸馏。

• 定义相关配置（TrainingConfig和DistillationConfig），并用
该配置初始化Dis-tiller；

• 定义适配器（adaptor）和回调函数（callback）；

• 调用Distiller的train方法开始蒸馏。

下面介绍适配器和回调函数的概念。

（1）适配器。Distiller是模型无关的。因此，当蒸馏不同模型
时，需要将模型的输入与输出转换为Distiller可以理解的数据。适配
器的功能是充当Distiller和模型间的“翻译”。它以模型的输入和模
型的输出作为输入，返回一个包含特定键值的字典，其各个键名解释了
该键值的含义。如“logits”是模型最终Softmax函数接收的
logits；“hidden”是模型中间隐含层状态矩阵等。

（2）回调函数。在训练模型期间，常常需要每隔一定步数在开发
集上验证模型的性能。这一功能可以通过向Distiller传递回调函数实
现。Distiller将在每个指定的检查点（Checkpoint）处执行回调函数
并保存模型。

以下代码展示了一个最简单的工作流程，在情感分类数据集SST-2
上，将12层的BERT-base模型蒸馏至6层的BERT模型（使用DistilBERT进
行初始化）。





除了以上展示的最简工作流程，在实际应用中还需要进行额外的设
置，以获得更好的蒸馏效果。建议读者访问TextBrewer官方网站，查看
常见自然语言处理任务的蒸馏方法，有助于进一步了解工具包的使用方
法。



8.4 生成模型

本书第5、6、7章分别介绍了静态词向量学习模型（如
Word2vec）、动态词向量模型（如ELMo）和BERT等预训练语言模型。这
些模型都可以归纳为对于语言表示学习的预训练技术，其主要目的是获
得具有更强表达能力以及泛化性的编码器。这些模型在语言理解类任务
（如文本分类、自动问答）上取得了卓越的效果。在自然语言处理中还
有另外一大类任务——文本生成，例如机器翻译、文本摘要等。大部分
文本生成任务可以建模为条件式生成（Conditional Generation）问
题，这里的条件与具体任务相关，可以是源语言文本（机器翻译）、文
档（文本摘要）和属性或主题（可控文本生成）等。在这类任务中，不
仅需要对作为条件的输入有较好的表示能力（编码器），同时也需要较
强大的（序列）解码器生成目标文本。本书已经介绍了对于编码器的诸
多预训练方案，而对于解码器，是否也可以利用自监督学习的方式进行
预训练呢？沿着这个思路，研究人员提出了一系列相关的预训练生成模
型，其中具有代表性的模型有BART、UniLM、T5和GPT-3等。同时，还有
一部分研究专注于可控文本生成模型，本节也将介绍其中的相关模型。

8.4.1 BART

BART（Bidirectional and Auto-Regressive Transformers）模型
使用标准的基于Transformer的序列到序列结构（见4.4.3节），主要区
别在于用GeLU（Gaussian Error Linerar Units）激活函数替换了原始

结构中的 ReLU，以及参数根据正态分布 进行初始化。BART
结合双向的 Transformer 编码器与单向的自回归Transformer解码器，
通过对含有噪声的输入文本去噪重构进行预训练，是一种典型的去噪自
编码器（Denoising autoencoder）。BART模型的基本结构如图8-23所
示。

BART的预训练过程可以概括为以下两个阶段。首先，在输入文本中
引入噪声，并使用双向编码器编码扰乱后的文本；然后，使用单向的自
回归解码器重构原始文本。需要注意的是，编码器的最后一层隐含层表
示会作为“记忆”参与解码器每一层的计算（见4.4.3节）。BART模型
考虑了多种不同的噪声引入方式，其中包括BERT模型使用的单词掩码。
需要注意的是，BERT模型是独立地预测掩码位置的词，而BART模型是通



过自回归的方式顺序地生成。除此之外，BART模型也适用于任意其他形
式的文本噪声。

图8-23 BART模型的基本结构

1.预训练任务

BART模型考虑了以下五种噪声引入方式：

（1）单词掩码。与BERT模型类似，在输入文本中随机采样一部分
单词，并替换为掩码标记（如[MASK]）；

（2）单词删除。随机采样一部分单词并删除。要处理这类噪声，
模型不仅需要预测缺失的单词，还需要确定缺失单词的位置；

（3）句子排列变换。根据句号将输入文本分为多个句子，并将句
子的顺序随机打乱。为了恢复句子的顺序，模型需要对整段输入文本的
语义具备一定的理解能力；

（4）文档旋转变换。随机选择输入文本中的一个单词，并旋转文
档，使其以该单词作为开始。为了重构原始文本，模型需要从扰乱文本
中找到原始文本的开头；

（5）文本填充。随机采样多个文本片段，片段长度根据泊松分布
（λ=3）进行采样得到。用单个掩码标记替换每个文本片段。当片段长
度为0时，意味着插入一个掩码标记。要去除这类噪声，要求模型具有
预测缺失文本片段长度的能力。

图8-24对这五类噪声进行了概括。



图8-24 可用于BART模型预训练的相关任务

可以看出，预训练任务既包含单词级别的任务，又包含句子、文档
级别的去噪任务。这些任务对于不同下游任务的表现各不相同。文献
[60]的实验表明，基于文本填充任务得到的预训练模型在下游任务中表
现普遍更好，在此基础上增加句子排列变换去噪任务能够带来小幅的额
外提升。接下来，结合具体代码演示BART模型的文本填充能力。这里使
用Facebook发布的预训练BART模型（bart-base）以及transformers库
提供的调用接口BartForConditionalGeneration。具体代码如下。

在这个例子中，输入文本中的掩码标记（＜mask＞）处被填充
为“No War”，在句子结构和语义上都较为合理。

2.模型精调

预训练的BART模型同时具备文本的表示与生成能力，因此适用于语
言理解、文本生成等不同类型的下游任务。对于不同的任务，BART模型
的精调方式有所不同。

（1）序列分类与序列标注。对于序列分类任务（如文本情感分



类），BART模型的编码器与解码器使用相同的输入，将解码器最终时刻
的隐含层状态作为输入文本的向量表示，并输入至多类别线性分类器
中，再利用该任务的标注数据精调模型参数。与BERT模型的[CLS]标记
类似，BART模型在解码器的最后时刻额外添加一个特殊标记，并以该标
记的隐含层状态作为文本的表示，从而能够利用完整的解码器状态。

同样地，对于序列标注任务，编码器与解码器也是使用相同的输
入。此时，解码器各个时刻的隐含层状态将作为该时刻单词的向量表示
用于类别预测。

（2）文本生成。BART模型可以直接用于条件式文本生成任务，例
如抽象式问答（Abstractive question answering）以及文本摘要
（Abstractive summarization）等。在这些任务中，编码器的输入是
作为条件的输入文本，解码器则以自回归的方式生成对应的目标文本。

（3）机器翻译。当用于机器翻译任务时，由于源语言与目标语言
使用不同的词汇集合，无法直接精调BART模型。因此，研究人员提出将
BART模型编码器的输入表示层（Embedding layer）替换为一个小型
Transformer编码器，用来将源语言中的词汇映射至目标语言的输入表
示空间，从而适配BART模型的预训练环境（见图8-25）。由于新引入的
源语言编码器参数是随机初始化的，而BART模型大部分的其他参数经过
了预训练，使用同一个优化器对两者同时进行训练会出现“步调不一
致”的情况，可能无法取得很好的效果。因此，研究人员将训练过程分
为两步。首先，固定BART模型的大部分参数，只对源语言编码器、BART
模型位置向量和BART预训练编码器第一层的自注意力输入投射矩阵进行
训练；然后，对所有的参数进行少量迭代训练。

图8-25 BART模型用于机器翻译任务示例



值得注意的是，虽然BART模型是为生成任务设计的，但是它在判别
任务上的表现也很优异，甚至可以与RoBERTa持平。关于BART模型的更
多细节以及在相关任务上的表现，感兴趣的读者请自行参考文献[60]。

8.4.2 UniLM

如果将基于Transformer的双向语言模型（如BERT模型中的掩码语
言模型）与单向的自回归语言模型（如BART模型的解码器）进行对比，
可以发现，两者的区别主要在于模型能够使用序列中的哪部分信息进行
每一时刻隐含层表示的计算。对于双向 Transformer，每一时刻隐含层
的计算可以利用序列中的任意单词；而对于单向Transformer，只能使
用当前时刻以及“历史”中的单词信息。基于这一思想，研究人员提出
了单向Transformer结构的统一语言模型（Unified LanguageModel，
UniLM）。不同于BART模型的编码器--解码器结构，UniLM只需要使用一
个Transformer网络，便可以同时完成语言表示以及文本生成的预训
练，进而通过模型精调应用于语言理解任务与文本生成任务。它的核心
思想是通过使用不同的自注意力掩码矩阵控制每个词的注意力范围，从
而实现不同语言模型对于信息流的控制。

1.预训练任务

UniLM模型提供了一个统一的框架，可以利用双向语言模型、单向
语言模型和序列到序列语言模型进行预训练。其中，基于双向语言模型
的预训练使模型具有语言表示的能力，适用于语言理解类下游任务；而
基于单向语言模型以及序列到序列语言模型的预训练任务使模型具有文
本生成的能力。

图8-26展示了不同的预训练任务对应的自注意力掩码模式。



图8-26 UniLM模型中不同预训练任务对应的自注意力掩码矩阵

假设第l层Transformer的自注意力矩阵为Al，在UniLM中，Al可由

下式计算：

式中，Ql、Kl分别为第l层上下文表示经线性映射后得到的查询、

键分别对应的向量：d是向量的维度。UniLM在原始自注意力计算公式的

基础上增加了掩码矩阵 ，n是输入序列的长度，M 是一个常
数矩阵，定义如下：

通过控制M，便可以实现不同的预训练任务。

（1）双向语言模型。输入序列由两个文本片段组成，由特殊标记
[EOS]相隔。与BERT模型类似，在输入文本中随机采样部分单词，并以
一定概率替换为[MASK]标记，最后在输出层的相应位置对正确词进行预
测。在该任务中，序列中的任意两个词都是相互“可见”的，因此在前
向传播过程中都能够被“注意”到。反映在Transformer模型中，则是
一个全连接的自注意力计算过程，如图8-26（a）所示。此时，对原始



自注意力掩码矩阵不作任何变化，即M=0。

（2）单向语言模型。包括前向（自左向右）与后向（自右向左）
的自回归语言模型。以前向语言模型（图8-26（b））为例，对于某一
时刻隐含层表示的计算，只能利用当前时刻及其左侧（前一层）的上下
文表示。相应的自注意力分布是一个三角矩阵，灰色代表注意力值为
0。相应的，掩码矩阵M在灰色区域处的值为负无穷（−∞）。

（3）序列到序列语言模型。利用掩码矩阵，还可以方便地实现序
列到序列语言模型，进而应用于条件式生成任务。此时，输入序列由分
别作为条件以及目标文本（待生成）的两个文本片段构成。条件文本片
段内的词相互“可见”，因此使用全连接的自注意力；对于目标文本片
段，则采用自回归的方式逐词生成，在每一时刻，可以利用条件文本中
的所有上下文表示，以及部分已生成的左侧上下文表示，如图8-
26（c）所示。在有关文献中，也将该结构称为前缀语言模型（Prefix
LM）。

与BART模型的编码器--解码器框架不同，这里的编码与解码部分共
享同一套参数，而且在自回归生成的过程中，与条件文本之间的跨越注
意力机制也有所区别。

2.模型精调

（1）分类任务。对于分类任务，UniLM的精调方式与BERT类似。这
里使用双向Transformer编码器（M=0），并以输入序列的第一个标记
[BOS]处的最后一层隐含层表示作为文本的表示，输入至目标分类器，
再利用目标任务的标注数据精调模型参数。

（2）生成任务。对于生成任务，随机采样目标文本片段中的单词
并替换为[MASK]标记，精调过程的学习目标是恢复这些被替换的词。值
得注意的是，输入序列尾部的[EOS]标记也会被随机替换，从而让模型
学习什么时候停止生成。

8.4.3 T5

谷歌公司的研究人员提出的T5（Text-to-Text Transfer
Transformer）模型采用了一种与前述模型截然不同的策略：将不同形



式的任务统一转化为条件式生成任务。这样一来，只需要一个统一
的“文本到文本”生成模型，就可以使用同样的训练方法与解码过程完
成不同的自然语言处理任务，而无须针对不同任务设计不同的模型结构
与训练方法。与此同时，这种“大一统”模型还能够极大地降低不同任
务之间迁移学习与多任务学习的难度。

使用同一套模型参数完成多项不同的条件式生成任务有两个很关键
的要素。首先，需要给模型注入任务信息，使其能够按照特定任务生成
目标文本。为模型注入任务信息是迁移学习中常用的技术，尤其是多任
务学习以及元学习（Meta-learning）。任务信息的表示也有很多种方
法，比如向量表示、自然语言描述和少量代表性样本等。T5模型使用的
是自然语言描述或简短提示（Prompt）作为输入文本的前缀表示目标任
务。例如，对于由英语到德语的机器翻译，可以在输入文本的头部加
上“translate English to German：”的前缀；对于文本摘要任务，
则在输入文本前加上“summarize：”；除此之外，对于语言理解类任
务，如情感分类，可以加上“sentiment：”，并输出单
词“positive”或者“negative”。表8-11列举了不同任务下的输入--
输出定义方式。

表8-11 不同任务下的输入--输出定义方式

另一个要素是模型的容量。为了使模型具备完成不同任务的能力，
模型需要比单任务学习大得多的容量。影响模型容量的因素有很多，如
Transformer层数、自注意力头的数目和隐含层向量的维度等。文献
[61]对比分析了不同容量的模型在不同任务上的表现，发现模型的性能
随着模型容量的增加而稳定提升，表现最好的模型达到了约110亿个参
数的规模。

由于不同的任务已经被统一成文本生成的形式，所以T5模型可以使
用任意序列到序列的生成模型结构。例如，BART模型使用的编码器--解



码器结构、单向语言模型和UniLM中的序列到序列模型。文献[61]的实
验表明，编码器--解码器结构表现相对更好。

（1）自监督预训练。通过对预训练任务的细致搜索，最终T5模型
采用了类似于BART模型的文本填充任务进行预训练，如表8-12所示。与
BART模型稍有不同，这里对不同位置的文本片段使用不同的掩码标记；
同时，在目标端不对原始句子进行完全重构，而是重构丢弃的文本片
段，并通过掩码标记指示恢复片段的位置信息。

表8-12 T5模型预训练任务示例

（2）多任务预训练。除了使用大规模数据进行无监督预训练，T5
模型还可以利用不同任务的标注数据进行有监督的多任务预训练，例如
GLUE基准中的语言理解、SQuAD问答和机器翻译等任务。与通常的多任
务训练不同之处在于，这里可以在训练过程中为每个任务保存一个独立
的检查点（Checkpoint），分别对应该任务开发集上的最好性能。预训
练完成后，可以分别对各个任务进行少量迭代的模型精调。文献[61]的
实验表明，在各个任务混合比例合适的条件下，多任务预训练与无监督
预训练表现相近。

关于T5模型，原文献提供了大量的实验细节，感兴趣的读者请自行
参考。T5模型带来的主要启发是：一方面，对自然语言处理任务的形式
化可以不拘泥于传统的分类、序列标注和生成等，通过统一任务的定义
方式，可以获得更加通用化的模型；另一方面，参数规模和数据集质量
对预训练模型具有显著的影响。

8.4.4 GPT-3

与T5模型相似，OpenAI提出的GPT-3模型[62]（第三代GPT）也是通
过将不同形式的自然语言处理任务重定义为文本生成实现模型的通用
化。两者的区别在于，GPT-3主要展示的是超大规模语言模型的小样本
学习（Few-shot learning）能力。GPT-3模型的输入不仅以自然语言描
述或者指令作为前缀表征目标任务，还使用少量的目标任务标注样本作
为条件上下文。例如，对于机器翻译任务，在小样本的情况下，为了获



得“cheese”的法语翻译，可以构建以下输入：

实验表明，GPT-3模型不需要任何额外的精调，就能够在只有少量
目标任务标注样本的情况下进行很好的泛化。

GPT-3延续了GPT-2（第二代GPT）[63]的单向Transformer自回归语
言模型结构，但是将规模扩大到了1750亿个参数。自回归语言模型为什
么会具有小样本学习的能力呢？其关键在于数据本身的有序性，使得连
续出现的序列数据往往会蕴含着同一任务的输入输出模式。因此，语言
模型的学习过程实际上可以看作从很多不同任务中进行元学习的过程。
图8-27演示了这一过程。

图8-27 语言模型元学习过程

图8-27中的每个序列都包含一个具体任务的多个连续样本，语言模
型在该序列上的训练则为一次“内循环”（Inner loop），也称
为“In-Context Learning”。模型在不同序列上的训练则对应元学习
的“外循环”（Outer loop），起到了在不同任务之间泛化的作用，以
避免模型过拟合至某一个特定的任务。由此可见，数据的规模与质量对
于GPT-3的小样本学习能力起到了关键的作用。

由于需要以少量标注样本作为条件，因此，GPT-3模型的输入序列
可能较长。GPT-3使用了大小为2，048的输入，相较于其他模型，其对
于内存、计算量的要求都要更高。由于GPT-3庞大的参数量，目前在将
GPT-3用于下游任务时，主要是在小样本学习的设定下直接进行推理，



而不对模型本身作进一步的精调。

关于GPT-3模型的更多模型以及训练上的细节，感兴趣的读者可以
参考文献[62]。

8.4.5 可控文本生成

除了作为预训练模型用于语言表示、条件式生成等下游任务，语言
模型的另一个重要的功能是“写作”，或定向文本生成。单纯的语言模
型（如GPT-2、GPT-3等）可以根据文章的开头，逐渐生成后续内容。但
是，其缺点在于无法控制生成文章的具体内容，或者“方向”，因此实
用性较弱。如何更好地控制文章的内容（如风格、主题、领域）以生成
更有价值的文章，是一个充满挑战的问题。

（1） CTRL。CTRL（Conditional Transformer Language Model）

模型[64]则是为了这一目的而设计的。CTRL模型可以根据指定的领域、
风格、主题、实体和实体关系等属性生成相应的文本。例如，需要生成
一段关于“刀”（Knife）且具有“恐怖”（Horror）色彩的文本，只
需要以“Horror A knife”作为前缀（Prompt），便可以生成以下文
本。

Horror A knife handle pulled through the open hole in the
front.I jumped when the knife hit.\n\nEyes widened in
horror.Her scream was the only sound I heard besides her
sobs.\n\nThe spider touched her feet as it started to dig into
the top of her arch.The creature's tears began to flow.\n\nThe
spider looked up to her and looked back at me with eyes filled
with burning tears.My heart started to race…

CTRL模型从结构上仍然是一个基于Transformer的自回归语言模
型。它之所以能够实现可控文本生成，其核心思想是从海量无标注数据
中定位文章所在的领域或其他属性，并作为控制代码（Control
codes）放在输入文本的头部，以指导后续文本的生成。原文作者发
现，CTRL模型还可以根据不同控制代码的组合生成更具针对性的文本，
尽管这种组合没有出现在训练中。上面的例子即
为“Horror”与“Knife”两种属性的组合。



如果将每种风格、领域或主题等属性下的生成任务看成一个个独立
的任务，那么CTRL模型的训练过程实际上也是一个多任务学习的过程。
与T5、GPT-3模型类似，为了使用一套模型参数完成多项任务，模型需
要具备较大的容量或规模。CTRL也是一个体量巨大的模型，它具有约16
亿个参数，48层Transformer编码层，16个自注意力头。

从头训练这样一个大体量的条件语言模型无疑代价很高。那么，能
否直接利用已有的通用预训练生成模型，如GPT-2，直接生成属性可控
的文本呢？

（2） PPLM。PPLM（Plug-and-Play Language Model）模型[65]提
供了一种无须重新训练，且即插即用的方法实现可控的文本生成。其核
心思想是，对于预训练语言模型（GPT-2）以及目标属性a（例如情感、
主题等），利用当前的生成结果是否满足属性a（即条件概率P
（a|x））对生成进行修正，使其朝着满足该属性的方向变化。这里x表
示当前生成的文本，P （a|x）可由已训练好的属性分类器计算得到。
具体修正过程可分为以下三个步骤：

• 前向过程：包括语言模型以及属性判别（即P （a|x）的计
算）；

• 反向过程：利用属性判别模型回传的梯度，更新语言模型内部的
历史状态，使得实际预测更接近目标属性；

• 重采样：根据新的概率分布，重新采样下一个生成的词。

这样一来，就能够使文本朝着属性判别器满意的方向生成。同时，
为了保证生成文本的流利性，还需要控制修正后的语言模型尽量与原预
训练语言模型接近。因此，PPLM模型在更新语言模型内部状态时，加入
了一项KL散度损失，以最小化修正前语言模型与修正后语言模型预测概
率分布之间的KL散度。

8.5 小结

本章主要围绕预训练语言模型中的几个研究热点：模型优化、长文
本建模的优化、模型蒸馏与压缩和生成式模型，介绍了相关模型的设计
思路和建模方法。在模型结构优化中，首先介绍了基于自回归语言模型



的XLNet、对BERT进行深度优化的RoBERTa、采用了轻量级框架的
ALBERT、使用了生成器--判别器结构的ELECTRA和基于纠错型MLM的
MacBERT。然后，介绍了面向长文本建模优化的相关模型，包括
Transformer-XL、Reformer、Longformer和BigBird。接着，介绍了如
何通过知识蒸馏方法压缩预训练语言模型，其中典型的工作包括
DistilBERT、TinyBERT 和 MobileBERT。为了快速实现知识蒸馏，还介
绍了知识蒸馏工具包TextBrewer，并结合实际蒸馏示例介绍了相关流
程。在本章的最后介绍了生成式模型，用于文本生成或者序列到序列的
建模，其中包括 BART、UniLM、T5 和GPT-3，并且对可控文本生成方面
的CTRL和PMLM两种模型进行了简要的介绍。

习题

8.1 阐述自回归语言模型和自编码语言模型的优缺点。

8.2 阐述词向量因式分解与跨层参数共享对ALBERT模型解码时间的
影响。

8.3 相比传统通过文本切分的方式处理长文本，阐述长文本处理模
型处理阅读理解和命名实体识别任务的优势。

8.4 仿照8.4.4节中的介绍，尝试构造GPT-3在问答任务上的输入形
式。

8.5 仿照7.4.2节中的介绍，在SST-2数据集上，使用RoBERTa-base
和ELECTRA-base模型训练单句文本分类模型，并对比两者的实验效果。

8.6 在MNLI数据集上，利用TextBrewer工具包实现12层BERT-base-
cased模型蒸馏至3层的BERT模型，要求准确率不低于81%。

[1] 这里不考虑随机出来的掩码模式完全一样的情况（极低概率）。

[2] 也被译作空洞卷积。

[3] 即块向量（Segment Embedding）。

[4] 原文献称为Transformer层蒸馏（Transformer Distillation）。



  第9章 

多模态融合的预训练模型

分布式向量表示提供了一种通用性的语义表示方法，预训练语言模
型为学习语言的分布式向量表示提供了一种有效的手段。除此之外，还
可以将不同语言、不同形式的媒体或多种知识源融入预训练模型的学习
过程中，将这些不同模态的数据表示在相同的向量空间内，从而在不同
模态之间建立一座信息交互、知识迁移的桥梁。本章首先介绍融合多种
语言的预训练模型，然后介绍如何将图像或视频等多种类型的媒体数据
与语言融合并预训练，最后介绍如何在预训练语言模型中融入知识图谱
以及其他多种任务等异构知识源。

9.1 多语言融合

融合多语言的预训练模型将不同语言符号统一表示在相同的语义向
量空间内，从而达到跨语言处理的目的。一种应用场景是使得在一种语
言上训练的模型，可以直接应用于另一种语言，从而达到降低对目标语
言标注数据依赖的目的，这对于自然语言处理模型在小语种，尤其是在
资源稀缺语言（Low-resource Languages）上的快速部署具有重要的意
义。另一种应用场景是同时利用多种语言的标注数据，使其能够互相帮
助，从而提升这些语言的处理能力。

对于静态词向量，若要将不同语言的词语表示在同一个向量空间之
内，最简单的做法就是使互为翻译的词在该向量空间内距离接近。于是
可以先独立学习各个语言的词汇分布表示，然后再将它们对齐。由于不
同语言的词向量表示之间存在一定程度的线性映射关系，于是可以通过
学习一个“翻译矩阵”，将一种语言的词向量表示“翻译”（映射）到
另一种语言。可以将双语词典等互译词对集合作为训练数据完成矩阵参
数的学习。



对于动态词向量或预训练语言模型而言，由于每个词的向量表示是
随着上下文动态变化的，因此无法单纯地使用词典学习这种映射关系，

需要使用一定规模的双语平行句对才能学习[66]。那么，是否有更好的
解决方案呢？下面介绍两种效果较好且应用广泛的多语言预训练模型。

9.1.1 多语言BERT

谷歌公司在发布单语言 BERT 模型的同时，还发布了一个直接在维
基百科中数据量最多的前104种语言上训练的多语言 BERT 模型
（Multilingual BERT，mBERT），其能够将多种语言表示在相同的语义
空间中。下面通过HuggingFace提供的transformers库，演示一个多语
言BERT的例子。其中，使用的是区分大小写的多语言BERT-base模型
（bert-base-multilingual-cased），任务为掩码填充，即将输入中的
[MASK]填充为具体的标记。



此处输入为一个中英文混杂的句子：“我like[MASK]”，概率最高
的前五个输出分别为：“你、我、歌、的、Love”。可见，输出结果基
本符合直觉，并且同时包含了中英文两种语言的结果，说明该模型确实
能够同时处理多种语言。

多语言BERT模型采用与单语言BERT相同的预训练任务和模型结构，
并且所有语言共享相同的模型。由于使用的是多语言数据，因此多语言
BERT中的掩码语言模型也被称作多语言掩码语言模型（Multilingual
Masked Language Modeling，MMLM）。另外，无须使用双语平行句对，
只需要对每种语言的数据单独采样即可，不过由于各种语言数据量不均
衡，如果平均采样会造成小语种语言训练不足的问题，因此采用幂指数
加权平滑方法对不同语言进行采样。最后，因为不同语言的词汇不同，
所以多语言BERT的词表包含了所有的语言。

为什么简单地在多语言混合数据上预训练，就能同时处理多种语
言，即将多种语言表示在相同的语义空间内呢？这主要是因为语言自身
存在混合使用、共享子词等特点。所谓混合使用，即在一种语言的文本
中，经常混有其他语言，尤其是一些同语族语言，它们甚至共享了一些
词汇。即使是不同语族的语言，在使用时也经常会有意无意地直接使用
其他语言的词汇，这种情况又被称作Code-switch，如本书的文字中就
含有大量的英文术语。BERT使用的子词策略进一步提高了共享词汇（标
记）的可能性，如一些同族的语言，虽然使用的词汇有一些差异，但是
词根有可能是一样的，因此经过子词切分后，就产生了大量的共享子
词。这些共享的词汇或者子词作为桥梁，打通了不同语言之间的壁垒，
从而将多种语言都表示在相同的语义空间内。

然而，如果语言之间共享的词汇过少，会导致这种只利用多种语言
各自的单语语料库的预训练方法失效。那么如何解决该问题呢？

9.1.2 跨语言预训练语言模型

为了解决单语语料库共享词汇过少的问题，Facebook提出了跨语言
预训练语言模型（Cross-lingual Language Model Pretraining，

XLM）[67]。在 BERT的预训练策略基础上，XLM 采用基于双语句对的翻
译语言模型（Translation Language Modeling，TLM）预训练目标，即
将互为翻译的两种语言的句子拼接起来，然后在两种语言中随机遮盖若
干子词，并通过模型预测，翻译语言模型示例如图9-1所示。当一种语



言对预测提供的信息不足时，另一种语言可以提供额外的补充信息，从
而实现跨语言的目标。

图9-1 翻译语言模型示例

XLM 虽然取得了比 mBERT 更好的效果，但是依赖双语平行句对，
然而很多语言较难获得大规模的句对数据。另外，双语平行数据一般是
句子级别的，这导致无法使用超越句子的、更大范围的上下文信息，从
而对模型的性能造成了一定的损失。为了解决该问题，Facebook 又对

XLM 进行了改进，提出了 XLM-R （XLM-RoBERTa）模型[68]。顾名思
义，XLM-R的模型结构与RoBERTa一致，而与XLM最大的区别在于取消了
翻译语言模型的预训练任务，从而不再依赖双语平行语料库。为了进一
步提高模型在小语种上的效果，XLM-R还使用了规模更大的Common
Crawl多语言语料库（前100种语言）。下面演示使用XLM-R Large模型
进行掩码填充任务的效果：



此处仍输入中英文混杂的句子：“我 like＜mask＞”，概率最高
的前五个输出分别为：“_this、_you、_This、you、這個”，其中下
画线“_”表示空格。虽然XLM-R与mBERT的输出结果相比很难说孰优孰
劣，但是在更多实际下游任务上测试会发现，XLM-R的效果要明显优于
mBERT。为了进一步提升XLM-R对于不同语族语言的迁移能力，同时还不
受双语平行句对的限制，还可以人为地通过词汇Code-switch替换操
作，增加语言之间的关联性。

9.1.3 多语言预训练语言模型的应用

多语言预训练语言模型最直接的应用方式是零样本迁移（Zero-
shot transfer），即首先在资源丰富的源语言（如英语）上，针对下
游任务进行多语言预训练语言模型的精调，然后将精调后的模型直接应
用于目标语言，进行下游任务的预测。之所以被称为零样本迁移，指的
是对于目标语言，无须针对下游任务人工标注任何数据，这对于将自然
语言处理系统快速迁移到新的语言上具有明显的应用价值。

为了验证各种多语言预训练语言模型的优劣，已有多种跨语言任务
数据集被相继标注出来。CMU、谷歌等机构或公司将多个数据集汇总起
来，发布了跨语言预训练语言模型基准测试集——XTREME（Cross-



lingual TRansfer Evaluation of Multilingual Encoders）[69]，共
包括4大类任务的9个数据集，涉及的目标语言有40种（源语言统一为英
语）。表9-1列出了XTREME数据集的相关信息。

表9-1 XTREME数据集的相关信息

虽然应用简单直接，但是零样本迁移并没有考虑目标语言下游任务
的特殊性，如在句法分析中，不同语言的句法结构可能是不一样的，如
果将在英语（主谓宾结构）上训练的句法分析器直接应用于日语（主宾
谓结构）时，显然得到的句法分析结果是不符合日语语法特性的。为了
解决该问题，需要在源语言的下游任务上精调模型后，再在目标语言的
下游任务上继续精调模型，才能更好地适应目标语言。与直接在目标语
言上训练一个下游任务模型相比，该迁移方法需要的数据量要小得多，
这也体现了多语言预训练语言模型的优势。

9.2 多媒体融合

与融合多语言类似，在预训练模型中还可以融合多种媒体的数据，
从而打通语言与图像、视频等其他媒体之间的界限。下面介绍几种典型
的多媒体预训练模型。

9.2.1 VideoBERT

VideoBERT[70] 是第一个多媒体预训练模型，其预训练数据来自视
频及对应的文本字幕。首先将视频切分成每段30帧的片段，然后使用3
维 CNN 将每个片段转换成特征向量，接着使用K-Means算法对这些特征

向量进行聚类，共聚成124 =20，736个簇，每一个簇看作一小段视频的



标记，这样一大段视频就可以和文本一样表示成一个标记序列。接下
来，类似BERT模型，将带有掩码的“视频--字幕”对输入给
Transformer模型，并让模型预测相应的标记，如图9-2所示。

预训练好的VideoBERT可以直接用于视频检索等任务，如输入一段
文本，返回该文本对应的视频。另外，也可以将VideoBERT迁移到下游
任务，如生成更好的视频字幕等。

图9-2 VideoBERT模型预训练示意图

9.2.2 VL-BERT

VL-BERT[71]是一种用于图像和文本的预训练模型，使用图像及其对
应的描述文本预训练。如图9-3所示，其中图像中的标记是使用Fast R-

CNN模型[72]自动识别出的兴趣区域（Region-of-Interest，RoI），其
不但标定了相应区域的矩形范围，还有相应的物体类别标签
（如“猫”等）。然后就可以采用与BERT类似的预训练策略，构造自监
督学习任务预训练模型了。

图9-3 VL-BERT模型预训练示意图



9.2.3 DALL·E

2021年初，OpenAI发布了一个被称为DALL·E的跨媒体预训练生成
模型。与VL-BERT类似，也是使用图像及其对应的描述文本预训练。模
型结构采用与GPT一样的自回归语言模型，只是生成的不是语言标记，

而是图像标记[1]。最终，DALL·E能够根据输入的自然语言文本生成相
应的图像。即便输入的语言表达了一个现在世界上可能不存在的物体，
也能够生成一个结果，这为艺术创造或工业设计提供了灵感。图9-4展
示了DALL·E的输出结果，其中输入为“a clock in the shape of a
peacock.（一个孔雀形的时钟）”。

图9-4 DALL·E的输出结果

9.2.4 ALIGN

上面介绍的三种多媒体预训练模型都需要使用额外的技术，将图像
表示成类似文本的离散标记，这在一定程度上降低了图像的表示能力。
为了解决该问题，以ALIGN（A Large-scale ImaGe and Noisy-text

embedding）[73]为代表的多媒体预训练模型直接采用“图像--文本”对
作为预训练数据，并采用对比学习（Contrastive Learning）技术，即
将数据中存在的“图像--文本”对作为正例，并通过随机采样的图像或
文本对作为负例学习模型的参数。其中，图像和文本分别使用各自的编
码器编码。预训练好的模型可以直接应用于检索类任务，包括以文搜
图、以图搜文或者以“图+文”搜图等；另外，通过在下游任务上精
调，还可以大幅提高图像分类等任务的性能。图9-5展示了ALIGN模型结
构及其应用。



9.3 异构知识融合

根据第7章对BERT模型解释性的分析，预训练语言模型自身蕴含了
丰富的知识，包括语言学知识，如词法（词性、词义）、句法（依存）
等；以及事实型知识，如实体关系等。这是由模型规模、预训练任务以
及用于预训练的语料库等多方面因素共同决定的。根据目前的研究趋势
可以预见，随着模型规模的进一步扩大，预训练语言模型的潜力将得到
进一步的挖掘。但是，除了这种“规模+资源”的“暴力美学”，是否
存在其他获取智能的捷径？

图9-5 ALIGN模型结构及其应用

从人类的角度来看，人类不仅仅通过阅读学习并获取智能，也善
于“站在巨人的肩膀上”，吸纳已有的知识库和概念系统；并且可以从
不同任务中学习、相互启发。因此，如果能够找到有效的方式，将这些
知识融入预训练模型，一方面将提升模型学习的效率（只需更少的文本
数据），另一方面也能够减少由于文本数据中的偏置与噪声所带来的知
识噪声，并提升在下游任务中的表现。幸运的是，经过自然语言处理、
数据挖掘等相关领域研究人员几十年的耕耘，目前已经构建了很多宝贵
的知识库，而且大部分知识库可以开放使用。这些知识库通常是结构化
或半结构化的，易于操作与存储，例如词典、实体库和知识图谱等。同
时，还有来自不同自然语言处理任务的由人工构建的标注数据，它们也
可以被认为是另一种形态的“知识”。这里统一将这些知识称为“异构
知识”。本节将讨论如何有效地利用这些异构知识，进一步提升预训练



模型的能力。

9.3.1 融入知识的预训练

为了构建知识增强的预训练模型，需要解决两个问题：一是使用什
么类型的知识？二是如何在预训练模型中有效地融入异构知识？知识的
类型多种多样，既有词法和句法等语言学知识，也有语义词典、实体和
知识图谱等结构化的外部世界知识。前者可以通过对文本进行基础的语
言分析来获得，包括词法分析、句法分析和语义分析等。通常需要用到
相应的工具或模型，如词性标注工具、句法分析器等。然而，根据目前
对于预训练模型的分析，模型通过自监督学习已经学到了丰富的语言学
知识，进一步引入额外词法或句法模型的分析结果能取得的效果非常有
限，同时还可能受到模型预测错误的影响。因此，这里主要关注的是如
何融入外部世界知识，从而构建更加强大的预训练模型。

1.命名实体

命名实体是连接自然语言与现实世界的一个重要的信息纽带。例
如，对于句子“北京是中国的首都”，如果将“北京”替换为“哈尔
滨”，句子在语法层面依然成立，但是在事实层面却是错误的。从预训
练模型常用的掩码语言模型（MLM）训练目标来看，对于掩码输入“[M]
是中国的首都”，在理想情况下，模型对掩码标记处的预测应该是“北
京”，而不是其他的地名。为了使预训练模型学习到这种归纳偏置
（Inductive bias），有必要在预训练任务中引入相应的实体信息。

基于这一思想，百度的研究人员提出了ERNIE模型[74]。该模型在
BERT模型的基础上，通过改进掩码策略融入短语和实体知识。具体的，
ERNIE模型采用三种掩码策略：

• 子词级别掩码语言模型。与BERT模型一致，在子词级别掩码，对
于中文则为字级别；

• 实体掩码语言模型。利用命名实体识别工具或模型识别出输入文
本中的所有实体指称（Mention），然后在实体层面随机采样并掩码；

• 短语掩码语言模型。短语是由一组连续的单词或字组成的语义单
元。为了获得短语，首先利用相应工具或模型对输入文本进行词法分



析、组块分析（Chunking）或者其他语言相关的短语结构分析，识别出
文本中的短语，然后在短语层面随机采样并替换为同样长度的掩码标
记。

表9-2中的示例展示了三种不同掩码策略之间的区别。在这个例子
中，通过对完整的“J.K.Rowling”实体掩码并预测，预训练模型可以
学习到其与“Harry Potter”之间的实体关系。而在普通的词级别掩码
中，模型只需要根据“J.”与“Rowling”就可以做出正确的预测，因
而无法学习到更高层次的语义。

表9-2 ERNIE模型的不同掩码策略之间的区别（[M]表示掩码标记）

为了更好地理解对话（Dialogue），ERNIE模型还考虑了额外的对
话语言模型（Dialogue Language Model，DLM）预训练目标，这里不再
赘述，感兴趣的读者可自行参考文献[74]。

为了适应改进后的预训练任务，还需要选择合适的、含有丰富实体
信息的文本语料。ERNIE模型主要是为了中文而设计，因此使用了来自
中文维基百科、百度百科、百度新闻和百度贴吧等数据，这些数据包含
了大量实体知识。在多项中文语言理解类任务上的实验结果表明，
ERNIE模型相比于BERT模型普遍取得了更为出色的表现。特别的，在知
识型完形填空任务上，ERNIE模型能够准确地预测出更符合事实的答
案。例如，对于完形填空任务：“戊戌变法，又称百日维新，是___、
梁启超等维新派人士通过光绪帝进行的一场资产阶级改良。”，ERNIE
能够准确地预测出正确的答案—“康有为”，而BERT模型的预测结果则
是其他的错误人名。

ERNIE 模型主要利用了输入文本中较为浅层的实体指称信息，方法
简单且直接。为了进一步提升预训练模型的表示学习能力，研究人员试
图显式地将关于实体的外部知识库融入预训练模型，通过将实体语义与
真实世界中的概念关联（Grounding），获取增强的文本表示。其中比

较具有代表性的是KnowBERT 模型[75]。

KnowBERT模型试图融合的是一种通用的实体知识，任何能够用于获



取实体向量表示的知识形式都被囊括在其框架之内。例如，英语中著名

的语义词典Word-Net[1]包含了大量实体及其上下位关系，以及同义词集
合（Synset）等信息。这些信息都可以用来计算实体的表示；常用的维
基百科数据中含有大量的实体以及相应的文本描述，这些关于实体的描
述也可以用来计算相应实体的表示。因此，符合这一条件的知识库都适
用于KnowBERT模型。

为了建立输入文本与实体知识库之间的联系，KnowBERT首先对输入
文本进行实体识别。对于识别出的实体指称，抽取出它在实体知识库中
的相应条目集合以及相应的实体表示，然后利用实体链指器（Entity
linker）对该实体指称消歧。例如，在句子“《花木兰》根据迪士尼同
名动画片改编，讲述了花木兰女扮男装、代父从军的故事。”中，实体
指称“花木兰”出现了2次，前者表示电影，后者表示人物。通过检索
实体库，可以获取有关的实体条目。图9-6展示了“花木兰”百度百科
中对应的实体。

实体链指器根据实体指称（即“花木兰”）的表示以及知识库中实
体的表示，同时结合先验概率为知识库中的实体条目打分、排序，并选
取分数在预设阈值以上的条目作为候选实体集合。随后，利用候选实体
及相应分值，对句子中实体指称的表示进行更新，从而完成外部知识的
融合。更新之后的实体指称表示接着被用于重新计算句子中其他子词
（Wordpiece）的表示（Recontextualization），并作为模型下一层
Transformer的输入。从模型结构上来看，KnowBERT模型实际上是在
BERT模型的相邻两层Transformer之间增加了一个轻量的知识融合模
块，并将融合实体知识后的隐含层表示作为下一层Transformer的输
入，如图9-7所示。

图9-6 “花木兰”在百度百科中对应的实体



图9-7 KnowBERT模型的知识融合框架

KnowBERT模型的训练目标仍然使用掩码语言模型，但是由于实体知
识的引入以及与实体链指模型的结合，KnowBERT模型在词义消歧以及信
息抽取类任务上相比原始的BERT模型具有显著的优势。关于KnowBERT的
更多建模细节与实验结果，感兴趣的读者可参考文献[75]。

2.知识图谱

另一类重要的结构化知识库是知识图谱（Knowledge Graph）。知
识图谱是一种由实体以及实体关系构成的语义网络，通常可以表示为一
系列由（实体1，关系，实体2）以及（实体，属性，属性值）等事实型
三元组构成的集合，例如：（中国，首都，北京）、（霍金，作者，时
间简史）、（水，沸点，100摄氏度）等。目前，知识图谱已经被广泛
应用于智能搜索、自动问答和个性化推荐等领域。

为了将知识图谱融入预训练模型，清华大学与华为诺亚方舟实验室

的研究人员提出了ERNIETHU模型[76]（此处增加标记以便和前文介绍的

ERNIE模型区分）。ERNIETHU模型在BERT模型文本编码器（T-Encoder）
的基础之上增加了一个知识编码器（K-Encoder），如图9-8所示。K-
Encoder 通过知识图谱中的实体表示与输入文本中的实体指称表示之间
的交互来实现知识的融合。与 KnowBERT 模型类似，这里同样假设外部
知识库中实体的向量表示容易根据已有方法计算得到，且在模型预训练
过程中保持不变。对于知识图谱中实体以及关系的表示学习有很多种方

法，ERNIETHU 使用了比较经典的 TransE 模型[77] 获取知识图谱中的实
体表示。



图9-8 ERNIETHU模型框架

K-Encoder由多个知识融合层（Aggregator）堆叠而成。每一个知
识融合层根据当前的输入文本表示及知识图谱中相应的实体表示，通过
简单的全连接层融合。融合后的单词与实体向量表示将作为下一个知识
融合层的输入。在预训练阶段，除了使用BERT模型的掩码语言模型

（MLM）以及下一句预测（NSP）作为训练任务，ERNIETHU还提出对单词-
-实体之间的对齐关系进行掩码（相当于对实体进行掩码），并要求模
型在输出层根据与掩码实体对齐的单词表示预测出正确的实体。

对于知识图谱，除了在预训练阶段融入模型，还可以直接在推理阶

段对文本表示进行增强。例如，K-BERT模型[78]利用知识图谱对输入句
子中的实体指称进行扩展，从而得到树状结构的输入，如图9-9左下部
分所示。为了不影响原句子单词的位置向量表示，模型对分支上单词的
位置索引进行复用。在图9-9的例子中，“CEO”与“Apple”的位置索
引与“is”“visiting”都是3和4，从而避免原模型受到位置向量与训
练阶段不一致的影响。另外，K-BERT模型利用自注意力掩码矩阵对树状
结构输入的自注意力分布加以约束，以尽可能减少变化后的输入结构对
预训练模型的文本表示带来错误的改变。例如，分支上的单词只对相应
实体可见，且不同分支上的单词相互不可见（图9-9右下矩阵）。



图9-9 K-BERT模型结构

9.3.2 多任务学习

除了人工构建的结构化知识库，另一类重要的异构知识是来自其他
NLP任务的标注数据，如面向单句文本分类的情感分类任务、面向回归
问题的句子相似度预测任务以及面向句对文本分类的文本蕴含任务等。
来自这些任务的标注数据通常是由人工标注者基于一定的标注规范构建
的，是很宝贵的知识来源。相比于从无标注数据中学习的预训练模型，
多任务学习也是一种常用的用于提升模型能力的迁移学习技术。在
8.4.3节介绍的T5预训练模型，通过将不同形式的任务转换为文本生成
的问题，从而在一套统一的框架内实现多任务学习。针对T5模型的实验
结果也充分表明，基于多任务学习的预训练可以取得与从海量无标注数
据中进行自监督预训练相媲美的效果。作为两种互补的技术或者知识来
源，两者的有效融合将为模型的能力带来进一步的提升。

1.MT-DNN

微软提出的MT-DNN模型（Multi-task Deep Neural Network）是一

个简单有效的尝试[79]。MT-DNN的模型结构如图9-10所示，模型主要包
含两个部分，分别是多任务的共享编码层（与BERT一致）以及任务相关
的输出层。MT-DNN模型考虑了四种不同类型的语言理解类任务，分别是
单句文本分类（如CoLA、SST-2）、句对文本分类（如RTE、MNLI、
MRPC）、文本相似度（回归问题）以及相关性排序（排序问题）。不同
类型的任务对应不同的输出层结构与参数。模型输入的构造方式与BERT
基本一致，即“[CLS]文本1 [SEP]文本2 [SEP]”的形式。



图9-10 MT-DNN的模型结构

模型的训练过程分为两个阶段，首先对多任务共享的编码层进行预
训练，方法与BERT模型一致；然后利用各个任务的标注数据以及相应的
损失函数进行有监督的多任务学习。与T5模型类似，经过多任务学习的
MT-DNN模型可以在特定任务上进一步精调，通常能够取得更好的效果。

2.ERNIE 2.0

除了利用相关NLP任务的有限标注数据，还可以从无标注以及弱标
注数据中抽象出一系列任务联合学习，以进一步提升预训练模型的能
力。百度的研究人员在ERNIE模型的基础之上做了改进，分别从词法、
句法及语义层面构造了更加丰富的预训练任务，并通过连续多任务学习
（Continual Multi-task Learning）的方式进行增量式预训练，从而

得到了ERNIE 2.0模型[80]。ERNIE 2.0模型框架如图9-11所示。

在模型的输入层，除了常用的词向量、块向量和位置向量，ERNIE
2.0使用了一个额外的任务向量（Task embedding）。每一个预训练任
务对应一个独立的任务编码（1，2，···）并被转化为连续向量表
示，在训练过程中更新。使用任务向量是多任务学习中的常用手段，尤
其是在任务较多的情况下。这与T5、GPT-3等生成模型（8.4节）中使用
的任务提示（Prompt）思想是类似的。模型的输出层分别对应以下预训
练任务。



图9-11 ERNIE 2.0模型框架

（1）词法相关预训练任务

• ERNIE模型原有的单词、实体、短语掩码模型；

• 单词的大写（Capitalization）预测；

• 单词--文档关系预测（预测输入文本块中的词是否出现在同一文
档的其他文本块）。

（2）语法相关预训练任务

• 句子重排序：对于随机打乱的文本块，恢复其原始顺序；

• 句子距离预测：判断输入的两个句子是来自同一文档的两个相邻
句子，或是同一文档的两个不相邻句子，或来自不同文档。因此是一个
多分类问题。

（3）语义相关预训练任务

• 篇章关系（Discourse relation）预测：对句对间的修辞关系分

类。这里用到了由无监督方法构建的篇章关系数据集[81]；

• 信息检索相关性（IR Relevance）。这里需要用到搜索引擎的查
询日志：取搜索引擎的查询与文档的标题作为模型的输入句对，如果该
文档没有出现在搜索结果中，则认为两者不相关。否则，根据用户是否
点击进一步分为强相关与弱相关。



关于模型的训练过程，ERNIE 2.0采用了连续多任务学习的方式，
在训练过程中逐渐增加任务数量并进行多任务学习。在维持整体迭代次
数不变的条件下，自动为每个任务分配其在各个阶段多任务学习中的迭
代次数。实验结果表明，这种训练方式既可以避免连续学习
（Continual learning）的知识遗忘问题，也能够使各个任务得到更有
效的训练。ERNIE 2.0在中、英文各项任务上都取得了出色的表现，同
时为预训练任务的设计及多任务学习的机制带来了很多启发。

9.4 更多模态的预训练模型

除了多语言、多媒体和异构数据，还有很多数据来自其他的模态，
如页面的布局信息和表格信息等。例如，要理解经过扫描的收银条上的
内容，除了利用光学字符识别（Optical Character Recognition，
OCR）技术得到的文本，收银条中的格式布局信息也非常重要。

LayoutLM[82]等模型正是在预训练阶段利用了富文档中的页面布局信

息，有效提高了富文档内容的理解能力。LayoutLMv2[83]更是在
LayoutLM的基础上，引入了原始的图像信息，在文档视觉问答、文档图
像分类和文档内文字序列标注等多种文档理解相关任务上取得了很好的
效果。

另外，还有很多的信息和知识存储在表格中，如维基百科上有奥运
会相关的表格，记录了历届奥运会的举办时间、举办地信息等，这些表
格可以回答诸如“哪个国家举办的奥运会次数最多？”等问题。为了更
好地理解这些表格，也需要对其进行预训练。然而，如果将表格中的文
字仅作为文本预训练的话，则会失去其准确的语义信息。为此，在预训

练阶段TaBERT[84]、TAPAS[85]等针对表格的预训练模型，将表格周围的
文字以及表格中一行的信息（由多个〈列名，类型，单元格的值〉形式
的三元组组成）构成一个输入，其中文字部分使用掩码语言模型作为预
训练目标，而表格部分则通过遮盖掉其中的〈列名，类型〉或〈单元格
的值〉作为预训练目标，从而达到预训练文本以及表格对应信息的目
的。最终，表格预训练模型在Text2SQL（将自然语言转换为SQL语句）
等任务中取得了较好的效果。

9.5 小结



从多模态知识源中学习的能力是获取通用智能（General
Intelligence）的必经之路。本章主要围绕预训练模型中的多模态知识
融合技术，分别从多语言、多媒体及异构知识三个角度，结合最新的代
表性模型与方法进行了介绍。首先介绍了多语言预训练模型，包括
mBERT与XLM模型。然后介绍了以VideoBERT、VL-BERT、DALL·E及ALIGN
为代表的融合多媒体数据的预训练模型。最后，介绍了ERNIE、
KnowBERT、K-BERT等融入实体、知识图谱等结构化知识库的模型，以及
MT-DNN、ERNIE 2.0等利用多任务学习融入其他有监督或弱监督任务的
模型。除以上类型的模态外，还简要介绍了如何融入富文档、表格等更
多模态的技术思路。

习题

9.1 阐述多语言预训练模型研究的主要意义与应用场景。

9.2 使用HuggingFace提供的transformers库，分别实现基于mBERT
模型与XLM-R模型的跨语言自然语言推理，并在相应的基准数据集XNLI
上进行实验。

9.3 试分析多媒体融合的预训练模型目前存在哪些主要的挑战或瓶
颈？结合最新的相关文献说明。

9.4 融合了知识库的预训练模型（如 ERNIE、KnowBERT）存在哪些
潜在的缺点？

9.5 除了实体、关系等结构化知识，目前还有哪些知识是预训练模
型缺少的或者难以从文本中直接学习到的？

9.6 在多任务或多语言学习的过程中，考虑到不同任务（语言）的
数据量、难度往往不一致，在训练时应当注意哪些问题，以及采用哪些
策略？结合 MT-DNN、ERNIE 2.0模型，以及第8章介绍的T5等模型进行
分析。

[1] 使用Discrete VAE算法将图像的子区域表示成离散的标记。
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