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1 第一章
1.1. 设 E =

∪∞
k=1 Ak, Bk = E\Ak, k = 1, 2, . . . . 证明

E = lim
k→∞

Ak ∪ lim
k→∞

Bk.

Solution: 直接计算得到

E = ( lim
k→∞

Ak) ∪ (E\ lim
k→∞

Ak)

= ( lim
k→∞

Ak) ∪ (E\(
∞∩
j=1

∞∪
k=j

Ak))

= ( lim
k→∞

Ak) ∪ (
∞∪
j=1

∞∩
k=j

E\Ak)

= ( lim
k→∞

Ak) ∪ ( lim
k→∞

Bk).

1.2. 设 f(x), f1(x), f2(x), . . . , 是定义在 E ⊂ Rn 上的实值函数，记 D 为 {fk(x)} 不收敛于 f(x)
的点所构成的集合，证明

D =
∞∪
i=1

∞∩
n=1

∞∪
k=n

{
x ∈ E : |fk(x)− f(x)| ≥ 1

i

}
.

Solution: 题目的本质是对 ϵ− δ 极限语言的重译。于是我们直接依据定义得到

D =
{
x ∈ E : ∃ϵ > 0, ∀n ∈ N, ∃k ≥ n, |fk(x)− f(x)| ≥ ϵ

}
=

{
x ∈ E : ∃i > 0, ∀n ∈ N, ∃k ≥ n, |fk(x)− f(x)| ≥ 1

i

}
=

∞∪
i=1

∞∩
n=1

∞∪
k=n

{
x ∈ E : |fk(x)− f(x)| ≥ 1

i

}
.
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1.3. 设 A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·，B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ · · ·，证明( ∞∩
n=1

An

)
∪
( ∞∩

n=1

Bn

)
=

∞∩
n=1

(An ∪Bn).

Solution: 我们通过典型的集合论方法来证明这个等式。

首先
(∩∞

n=1 An

)
∪
(∩∞

n=1 Bn

)
⊂

∩∞
n=1(An∪Bn)是显然的，而对于 x ∈

∩∞
n=1(An∪Bn)，

由于 ∀n ∈ N, x ∈ An ∪ Bn，于是 x ∈
(∩∞

n=1 An

)
或 x ∈

(∩∞
n=1 Bn

)
，证毕。

1.4. 设 {fn(x)} 和 f(x) 是定义在 R 上的实值函数，并且

lim
n→∞

fn(x) = f(x), x ∈ R.

证明

∀t ∈ R, {x ∈ R : f(x) ≤ t} =
∞∩
k=1

∞∪
m=1

∞∩
n=m

{
x ∈ R : fn(x) < t+

1

k

}
.

Solution: 证明思路类似于习题 1.2。直接依定义得到

{x ∈ R : f(x) ≤ t} =
{
x ∈ R : ∀ϵ > 0, ∃m ∈ N, ∀n ≥ m, fn(x) < t+ ϵ

}
=

{
x ∈ R : ∀k ∈ N, ∃m ∈ N, ∀n ≥ m, fn(x) < t+

1

k

}
=

∞∩
k=1

∞∪
m=1

∞∩
n=m

{
x ∈ R : fn(x) < t+

1

k

}
.

1.5. 设有映射 f : X → Y. 证明

∀A ⊂ Y, f(f−1(A)) ⊂ A,

∀B ⊂ X, B ⊂ f−1(f(B)).

Solution: 依定义可得

f(f−1(A)) = {y ∈ Y : x ∈ f−1(A), y = f(x)},

而 f−1(A) = {x ∈ X : f(x) ∈ A}，于是对于 y ∈ f(f−1(A)) 必有 y = f(x) ∈ A，因此
f(f−1(A)) ⊂ A.

类似地，因为
f−1(f(B)) = {x ∈ X : f(x) ∈ f(B)},

并且对 x ∈ B 必有 f(x) ∈ f(B)，因此 B ⊂ f−1(f(B)).
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1.6. 设有映射 f : X → Y. 证明 f 是满射，当且仅当对任意的 B ⊂ Y 有 f−1(f(B)) = B.

Solution: 简单的定义重译：

f(X) = Y ⇔ ∀y ∈ Y, ∃x ∈ X, f(x) = y

⇔ ∀B ⊂ Y, f−1(f(B)) = B.

1.7. 设有映射 f : X → Y，证明下面的命题等价

1. f 是单射；

2. 对任意 A,B ⊂ X，有 f(A ∩ B) = f(A) ∩ f(B)；

3. 对任意 A ⊂ X，有 A = f−1(f(A)).

Solution: 我们循环地证明这些命题的等价性：

• 对于 1. ⇒ 2.，因为 f 是单射，所以对于 x1, x2 ∈ X, f(x1) = f(x2) 有 x1 = x2. 于
是我们设 y ∈ f(A) ∩ f(B)，于是存在 a ∈ A, b ∈ B 使得 y = f(a) = f(b)，于是有
f 的单射性得到 a = b ∈ A∩B，即 f(A)∩ f(B) ⊂ f(A∩B)。反方向的包含关系是
显然的。

• 对于 2. ⇒ 3.，由习题 1.5已知 A ⊂ f−1(f(A))。于是我们设 x ∈ f−1(f(A))，记
B = {x}，于是得到

f(B) = f(A) ∩ f(B) = f(A ∩ B) ̸= ∅,

因为 ∅ 是集合范畴 Set 里的始对象，所以 A ∩B ̸= ∅，于是 x ∈ A, f−1(f(A)) ⊂ A.

• 对于 3. ⇒ 1.，由 f−1(f(A)) 的定义我们可知，对于 x1, x2 ∈ X, f(x1) = f(x2) 有

{x1} = f−1(f({x1})) = f−1(f({x2})) = {x2},

于是 x1 = x2，这给出了 f 的单射性。

1.8. 若 (A\B) ∼ (B\A), 则 A ∼ B.

Solution: 双射的构造关键在于对集合的分解和已知双射的组合。由于 (A\B) ∼ (B\A)，
我们可知 ∃g : A\B → B\A，并且 g 是双射。同时考虑分解

A = (A\B) ∪ (A ∩B), B = (B\A) ∪ (B ∩ A).
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于是可以构造双射
f : A → B,

满足

f(x) =

{
g(x), x ∈ A\B,

x, x ∈ A ∩B.

这给出了 A ∼ B.

1.9. 若 A ⊂ B,A ∼ (A ∪ C)，则 B ∼ (B ∪ C).

Solution: 思路和习题 1.8类似。由于 A ∼ (A ∪ C)，我们可知 ∃g : A → (A ∪ C)，并且
g 是双射。同时由于 A ⊂ B，我们考虑分解

B = (B\A) ∪ A, B ∪ C = (B\A) ∪ (A ∪ C).

于是可以构造双射
f : B → B ∪ C,

满足

f(x) =

{
g(x), x ∈ A,

x, x ∈ B\A.

这给出了 B ∼ B ∪ C.

1.10. 构造出一个双射 f : [0, 1] → (0, 1).

Solution: 对于 R 上的只相差一个可数集的集合间映射的双射的构造，我们总是对其中
的简单的有理数考虑一个“位移”映射，对其他数考虑恒等映射。于是我们构造

f : [0, 1] → (0, 1),

满足

f(x) =


1
2
, x = 0,

1
3
, x = 1,
1

n+2
, x = 1

n
,

x, 其他.

显然这是个双射。
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1.11. 设 Γ 表示自然数集 N 的无限子集全体所成集合，证明 |Γ| = c.

Solution: 我们只需证明 Γ ∼ R. 考虑使用 Cantor-Bernstein 定理。
我们已知自然数集的幂集满足 P(N) ∼ R，因此必有 |Γ| ≤ c.

同时，因为已知 R ∼ (0, 1]，而将 (0, 1] 中的数用 2-进小数去表示，可知这给出一个单射

(0, 1] → Γ,

于是 c ≤ |Γ|. 由 Cantor-Bernstein 定理可知 |Γ| = c.

Remark. 通常在不承认连续统假设的情况下，我们只知道 ℵ0 < ℵ1 ≤ c,

1.12. 证明 [0, 1] 内全体无理数所组成的集合的基数等于 c.

Solution: 简单的集合论道理：设考虑的全集为 R，则无理数集我们表示为 Qc，同时有
无交并分解

[0, 1] = ([0, 1] ∩Q) ∪ ([0, 1] ∩Qc),

于是

c = |[0, 1]| = |([0, 1] ∩Q)|+ |([0, 1] ∩Qc)|
= max{ℵ0, |([0, 1] ∩Qc)|}

于是 |([0, 1] ∩Qc)| = c.

1.13. 设 E1, E2 ⊂ Rn，则 (E1 ∩ E2)
◦ = E◦

1 ∩ E◦
2 .

Solution: 唉，无语，和你说不下去，典型的集合论思想。
对于 x ∈ (E1 ∩ E2)

◦，可知有开邻域 U 使得

x ∈ U ⊂ E1 ∩ E2,

于是 x ∈ E◦
1 , x ∈ E◦

2，得到 (E1 ∩ E2)
◦ ⊂ E◦

1 ∩ E◦
2 .

当 x ∈ E◦
1 ∩ E◦

2 时，可知有开邻域 U, V 使得

x ∈ U ⊂ E1, x ∈ V ⊂ E2.

于是开集 U ∩ V 满足
x ∈ U ∩ V ⊂ E1 ∩ E2,

因此 E◦
1 ∩ E◦

2 ⊂ (E1 ∩ E2)
◦. 证毕。
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1.14. 证明 E ⊂ Rn 是闭集，当且仅当对任何 {xk} ⊂ E, 若 limk→∞ xk = x，必有 x ∈ E.

Solution: 条件的必要性是显然的。
反之，当对任何 {xk} ⊂ E, 若 limk→∞ xk = x，必有 x ∈ E 时，我们可以取出一个互不
相等的子列 {xkj ⊂ E} 使得

∃x′ ∈ E ′, lim
j→∞

xkj = x′.

但是子列和原数列的极限应该是相同的，于是 x′ = x ∈ E，得到 E ′ ⊂ E，这说明 E 是
闭集。

1.15. 设 E ⊂ Rn，证明以下命题等价

1. x ∈ E.

2. ∀δ > 0, B(x, δ) ∩ E ̸= ∅.
3. ∃{xk} ⊂ E, s.t. limk→∞ xk = x.

Solution: 依定义循环验证即可。

• 对于 1. ⇒ 2.，因为 x ∈ E，所以 x ∈ E ′，所以存在互不相等的点列 {xk} ⊂ E 使得

lim
k→∞

|xk − x| = 0,

于是 ∀δ > 0 存在 k0 ∈ N 使得当 k ≥ k0 时，有 |xk − x| < δ. 而 xk ∈ E，于是

∀δ > 0, B(x, δ) ∩ E ̸= ∅.

• 对于 2. ⇒ 3.，基于选择公理，因为

∀δ > 0, B(x, δ) ∩ E ̸= ∅.

对于每个 k ∈ N, δ = 1
k
，我们在 B(x, δ)∩E 里取出一个 xk 构成 {xk}，于是直接由

极限定义可知
lim
k→∞

xk = x.

• 对于 3. ⇒ 1.，我们只需要对于 {xk} 取出一个互不相等的子列即可，这显然是可以
做到的。

Remark. 都学实变函数了，还是承认选择公理罢。
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1.16. 设 E ⊂ Rn，证明 E◦ ∪ Ec = Rn, E◦ ∩ Ec = ∅.

Solution: 对于 x ∈ Rn，我们不妨设 x /∈ E◦，则对任意的开邻域 U 都有

U ̸⊂ E, U ∩ Ec ̸= ∅,

于是 x ∈ Ec. 类似的，当 x /∈ Ec 时，必有 x ∈ E◦，因此 Rn ⊂ E◦ ∪ Ec，而反方向的包
含关系是显然的，所以 E◦ ∪ Ec = Rn.

而当我们设 x ∈ E◦ 时，此时由逆否命题的等价性可知对任意的开邻域 U 都有

U ∩ Ec = ∅,

于是 x /∈ Ec. 类似地，当 x ∈ Ec 时，必有 x /∈ E◦. 于是 E◦ ∩ Ec = ∅.

1.17. 设 A,B ⊂ R，证明 A× B = A× B, (A× B)◦ = A◦ × B◦.

Solution: 由于笛卡尔积的良好性质，等式的成立只需依定义直接验证即可得到。

1.18. 对任意的 E ⊂ Rn，E ′, E 均为闭集。

Solution: 因为由定义可知，
(E ′)′ = E ′, (E)′ = E,

因此它们都是闭集。

1.19. 设 E ⊂ Rn, x0 ∈ E，f : E → R 是 E 上的实值函数。证明 f 在 x0 处连续，当且仅当对于
任意收敛于 x0 的点列 {xk} 都有

lim
k→∞

f(xk) = f(x0).

Solution: 必要性是显然的，这是点态连续定义的直接结论。
对于充分性，我们采取反证法：设 f 在 x0 处不连续，则

∃ϵ > 0, ∀δ > 0, ∃x ∈ E, ||x0 − x|| < δ, |f(x0)− f(x)| > ϵ.

于是我们取 δ = 1
k
，可以得到一个点列 {xk} 满足

lim
k→∞

xk = x0,

但是
lim
k→∞

f(xk) ̸= f(x0).

这和条件矛盾。
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1.20. 设 E ⊂ Rn, f : E → R，证明以下命题等价

1. f 在 E 上连续。

2. 对任意开集 G ⊂ R，存在开集 O ⊂ Rn 使得 f−1(G) = E ∩O,

3. 对任意闭集 T ⊂ R，存在闭集 F ⊂ Rn 使得 f−1(T ) = E ∩ F.

Solution: 我们循环的证明这些命题的等价性：

• 对于 1. ⇒ 2.，取 x ∈ f−1(G)，因为 G 是开集，所以存在开邻域

(f(x)− ϵ, f(x) + ϵ) ⊂ G.

而 f 是连续函数，于是对于此时的 ϵ > 0，存在 δ > 0使得对所有的满足 |y−x| < δ
的 y 都有

|f(y)− f(x)| < ϵ,

于是 f(y) ⊂ G，此时
B(x, δ) ∩ E ⊂ f−1(G),

于是我们取遍 x ∈ f−1(G)，得到一个开集

O =
∪

x∈f−1(G)

B(x, δx)

满足 f−1(G) = E ∩O.

• 对于 2. ⇒ 3.，以 R 为底空间，取开集 G := T c，此时由条件知有开集 O ⊂ Rn 使
得 f−1(G) = E ∩O. 于是

f−1(T ) = E\f−1(G) = E\(E ∩O) = E ∩Oc,

取闭集 F := Oc，得到 f−1(T ) = E ∩ F.

• 对于 3. ⇒ 1.，对任意 x ∈ E, ϵ > 0，我们不妨考虑闭集

T = (f(x)− ϵ, f(x) + ϵ)c

由条件知存在闭集 F ⊂ Rn 使得 f−1(T ) = E ∩ F，于是

f−1(f(x)− ϵ, f(x) + ϵ) = E\f−1(T ) = E ∩ F c

而 F c 是开集，因此存在 δ > 0 使得有开邻域 B(x, δ) 满足

∀y ∈ B(x, δ) ∩ E, f(y) ∈ (f(x)− ϵ, f(x) + ϵ)

亦即 f 在点 x 处连续，而 x 是任取的，因此 f 在 E 上连续。
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Remark. 事实上，这是基础的点集拓扑中的内容，对于不同的拓扑结构，我们通常都会使
用命题 2. 作为函数连续的定义，亦即考虑子空间拓扑。

1.21. 设 E ⊂ Rn 为紧集，f ∈ C(E)，则

1. f 为 E 上的有界函数。

2. f 在 E 上可以取到最大值和最小值。

3. f 在 E 上一致连续。

Solution:

1. 采用反证法：假设 f 在 E 上无界，则我们可以构造一个数列

{xn} = {x ∈ E : f(x) > n},

而 E 是紧集，在 Rn 的标准拓扑中，这和 E 是有界闭集是等价的。于是存在收敛
子列 {xnk

} 使得
lim f(xnk

) = f(limxnk
)

而由 f 的连续性我们知道，f 在极限点处应该是有限的，但这和点列的构造矛盾。

2. 设 M := sup f(x)，由上确界的定义，必然存在点列 {xn} 使得 f(xn) → M，于是
因为 E 是有界闭集，存在 E 中的收敛子列 {xnk

}，使得 f 在这个子列的极限点处
收敛。但是 f 是连续的，并且子列和原点列的极限是相同的，所以 M ∈ E。最小
值同理。

3. 采用反证法：假设 f 在 E 上不一致收敛，则

∃ϵ0 > 0, ∀δ > 0, ∃(xδ, yδ), s.t.||xδ − yδ|| < δ, |f(xδ)− f(yδ)| > ϵ0.

而 E 是紧集，当我们取 δ = 1
n
时，得到两个点列 {xn}, {yn}，此时我们可以分别取

出两个收敛子列 {xnk
}, {ynk

}，我们将它们的极限分别记为 x0, y0，于是由 f 的连
续性得到

lim f(xnk
) = f(x0), lim f(ynk

) = f(y0).

但是由点列本身的构造可知 x0 = y0，我们此时可知

|f(xnk
)− f(ynk

)| → 0

这与
|f(xδ)− f(yδ)| > ϵ0

矛盾。
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1.22. 设非空集合 E ⊂ Rn，证明

1. ∀t > 0，{x ∈ Rn : d(x,E) < t} 是 Rn 中的开集。

2. ∀t > 0，{x ∈ Rn : d(x,E) ≤ t} 是 Rn 中的闭集。

Solution:

1. 记 At := {x ∈ Rn : d(x,E) < t} 任意点 x ∈ At，取 δ := t− d(x,E) > 0，则对于点
y ∈ B(x, δ) 都有

d(y, E) ≤ d(x,E) + d(x, y) < d(x,E) + δ = t,

于是 B(x, δ) ⊂ At，可知 At 是开集。

2. 记 Bt := {x ∈ Rn : d(x,E) > t}，取 δ := d(x,E) − t > 0 即可得到 Bt 是开集，而
{x ∈ Rn : d(x,E) ≤ t} = (Bt)

c，所以是闭集。

1.23. 设有闭集 F ⊂ Rn，证明

F =
∞∩
k=1

Gk,

其中

Gk =
{
x ∈ Rn : d(x, F ) <

1

k

}
, k ∈ N.

Solution: F ⊂
∩∞

k=1 Gk 是显然的，这由点与集合的距离定义可知。我们设点 x /∈ F，因
为 F 的补集是开集，则存在 ϵ > 0 使得

∀y ∈ F, d(x, y) > ϵ,

于是一定存在 k ∈ N 使得
d(x, y) > ϵ >

1

k
.

因此

x /∈
∞∩
k=1

Gk,
∞∩
k=1

Gk ⊂ F.
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1.24. 设 {Fα} 是 Rn 中的有界闭集族，若任取其中有限个元素构成的子族 {Fαi
} 都有∩

i

Fαi
̸= ∅,

证明 ∩
α

Fα ̸= ∅.

Solution: 使用反证法：设
∩

α Fα = ∅，取集族中的一个元素，记为 Fα1，记 Gα := (Fα)
c，显

然 {Gα}是 Fα1 的一个开覆盖，而 Fα1 是紧集，于是存在一个有限开覆盖 {Gα2 , . . . , Gαm}，
并且这些 Gαi

对应的 Fαi
满足

m∩
i=1

Fαi
= ∅,

但这与题设矛盾。

Remark. 有限开覆盖定理的运用。

1.25. 设 {Fα} 是 Rn 中的有界闭集族，有开集 G 满足∩
α

Fα ⊂ G.

证明存在有限子族 {Fα1 , . . . Fαm} 使得

m∩
i=1

Fαi
⊂ G.

Solution: 由题设我们有(∩
α

Fα

)
\G =

(∩
α

Fα

)
∩Gc =

∩
α

(Fα ∩Gc) = ∅,

而 Fα∩Gc 是紧集，于是类似于习题 1.24的证明，我们可知存在有限个 Fα1∩Gc, . . . , Fαm∩
Gc 使得 ( m∩

i=1

Fαi

)
∩Gc =

m∩
i=1

(Fαi
∩Gc) = ∅,

于是
m∩
i=1

Fαi
⊂ G.
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1.26. 设 E ⊂ Rn，证明

1. x ∈ E，当且仅当 d(x,E) = 0。

2. x ∈ E◦，当且仅当 d(x,Ec) > 0。

Solution:

1. 充分性：因为 d(x,E) = 0，所以对任意 ϵ > 0 都有 xn ∈ E 使得 d(x, xn) < ϵ，这些
xn 构成了一个以 x 为极限的点列，于是 x ∈ E。

必要性：因为 x ∈ E，因此对任意的 ϵ > 0 都有

B(x, ϵ) ∩ E ̸= ∅.

于是我们对每个 ϵ = 1
n
都可以选取一个 xn ∈ E 使得 d(x, xn) < ϵ，因此 d(x,E) = 0.

2. 充分性：因为 d(x,Ec) > 0，所以存在 δ > 0 使得 B(x, δ, δ)∩Ec = ∅，于是 x ∈ Ec。

必要性：因为 x ∈ E◦，所以存在 δ > 0 使得 B(x, δ) ⊂ E，于是对任取的 y ∈ Ec 都
有 d(x, y) ≥ δ，所以

d(x,Ec) = inf
y∈Ec

d(x, y) ≥ δ > 0.

1.27. 设 F 为 Rn 中的有界闭集，G 为 Rn 中的开集，并且 F ⊂ G。证明存在 δ > 0 使得当
|x| < δ 时，有

F + {x} = {y + x : y ∈ F} ⊂ G.

Solution: 对每个点 y ∈ F ⊂ G，都存在 δy > 0 使得 B(y, δy) ⊂ G，并且我们可以取遍
所有的 y ∈ F 来给出一个开覆盖，即

F ⊂
∪
y∈F

B(y,
δy
2
).

因为 F 是 Rn 在标准拓扑下的有界闭集，所以是紧集，所以我们可以取一个有限子覆盖

F ⊂
N∪

n=1

B(yn,
δyn
2
).

我们取 δ = min{ δyn
2
}，此时任给 z = y + x ∈ F + {x}，由于我们构造出的开覆盖，存在

yn 使得 d(y, yn) <
δyn
2
，于是

d(z, yn) = d(y + x, yn) < d(y, yn) + |x| < δyn .

于是 F + {x} ⊂ G.
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1.28. 设 F1, F2 ⊂ Rn 为两个不相交的非空闭集，证明存在开集 G1, G2 使得

F1 ⊂ G1, F2 ⊂ G2, G1 ∩G2 = ∅.

Solution: 记 r = d(F1, F2)，不妨令

G1 := {x ∈ Rn : d(x, F1) <
r

3
}

G2 := {x ∈ Rn : d(x, F2) <
r

3
},

前两个条件显然是满足的。而我们易知

G1 = {x ∈ Rn : d(x, F1) ≤
r

3
}

G2 = {x ∈ Rn : d(x, F2) ≤
r

3
},

于是如果 G1 ∩G2 ̸= ∅，对于 x ∈ G1 ∩G2，有

d(F1, F2) ≤ d(x, F1) + d(x, F2) ≤
2

3
r,

这是矛盾的。
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2 第二章

2.1. 设 A,B ⊂ Rn,m∗(A) = 0，证明

m∗(A ∪B) = m∗(B) = m∗(B\A).

Solution: 考虑分解
B = (B\A) ∪ (A ∩ B),

于是由测度的次可加性我们可知

m∗(B) ≤ m∗(B\A) +m∗(A ∩B) ≤ m∗(B\A) +m∗(A) = m∗(B\A).

同时由于 B\A ⊂ B，由测度的单调性我们知

m∗(B\A) ≤ m∗(B),

因此 m∗(B\A) = m∗(B)。

同时由分解 A ∪ B = A ∪ (B\A) 可以得到

m∗(A ∪B) ≤ m∗(A) +m∗(B\A) = m∗(B\A) = m∗(B) ≤ m∗(A ∪ B),

于是
m∗(A ∪ B) = m∗(B) = m∗(B\A).

2.2. 设 A,B ⊂ Rn，m∗(A),m∗(B) < +∞，证明

|m∗(A)−m∗(B)| ≤ m∗(A∆B).

Solution: 由 A∆B = (A\B) ∪ (B\A) 可知 A ⊂ B ∪ (A∆B)，于是由外测度的单调性知

m∗(A) ≤ m∗(B) +m∗(A∆B),

于是 m∗(A)−m∗(B) ≤ m∗(A∆B)。同理可以得到 m∗(B)−m∗(A) ≤ m∗(A∆B)，于是

|m∗(A)−m∗(B)| ≤ m∗(A∆B).
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2.3. 设 {An} 为互不相交的可测集列，∀n ∈ N, Bn ⊂ An，证明

m∗
( ∞∪

n=1

Bn

)
=

∞∑
n=1

m∗(Bn).

Solution: 令

B :=
∞∪
n=1

Bn,

由可测集的定义可知，对于任意的 n ∈ N 有

m∗(B) = m∗(B ∩
( N∪

n=1

An

)
) +m∗(B ∩

( N∪
n=1

An

)c

)

≥ m∗(B ∩
( N∪

n=1

An

)
)

= m∗(B ∩
( N∪

n=1

An

)
∩ AN) +m∗(B ∩

( N∪
n=1

An

)
∩ (AN)

c)

= m∗(B ∩ AN) +m∗(B ∩
(N−1∪

n=1

An

)
)

= · · ·

=
N∑

n=1

m∗(B ∩ An) =
N∑

n=1

m∗(Bn).

于是令 N → ∞ 有

m∗
( ∞∪

n=1

Bn

)
≥

∞∑
n=1

m∗(Bn).

2.4. 设 E ⊂ Rn，证明 E 为可测集，当且仅当对任意的矩体 I ⊂ Rn 都有

m∗(I) = m∗(I ∩ E) +m∗(I ∩ Ec).

Solution: 关键是利用外测度的定义给出矩体的逼近。首先必要性是显然的。
对于充分性，取集合 T ⊂ Rn，不妨设 m∗(T ) < +∞，因为外侧度为 +∞ 时，需要的等
式是显然成立的。于是对任意的 ϵ > 0 都有开覆盖 {Ik} 使得∑

k∈N

Ik < m∗(T ) + ϵ.
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同时由条件可知对任意 k ∈ N 有

m∗(Ik ∩ E) +m∗(Ik ∩ Ec) = m∗(Ik),

于是 ∑
k∈N

m∗(Ik ∩ E) +
∑
k∈N

m∗(Ik ∩ Ec) =
∑
k∈N

m∗(Ik) < m∗(T ) + ϵ.

再由外侧度的单调性，次可数可加性可以得到

m∗(T ∩ E) +m∗(T ∩ Ec) ≤
∑
k∈N

m∗(Ik ∩ E) +
∑
k∈N

m∗(Ik ∩ Ec) < m∗(T ) + ϵ,

由 ϵ 的任意性有
m∗(T ∩ E) +m∗(T ∩ Ec) ≤ m∗(T ).

同时由 T ⊂ (T ∩ E) ∪ (T ∩ Ec) 可以得到

m∗(T ) ≤ m∗(T ∩ E) +m∗(T ∩ Ec).

所以 m∗(T ) = m∗(T ∩ E) +m∗(T ∩ Ec)。

2.5. 设 E ⊂ Rn，证明
m∗(E) = inf{m(G) :开集G ⊃ E}.

Solution: 令
A = inf{m(G) :开集G ⊃ E},

显然有 m∗(E) ≤ A。不妨设 m∗(E) < +∞，于是对任意 ϵ > 0 有开覆盖 {Ik} 使得∑
k∈N

m∗(Ik) < m∗(E) + ϵ,

于是对任意的 ϵ，都可以取开集
G =

∪
k∈N

Ik

使得 m∗(G) < m∗(E) + ϵ，所以必有

A ≤ m∗(E),

所以 m∗(E) = inf{m(G) :开集G ⊃ E}。
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2.6. 对任意可测集 A,B ⊂ Rn，证明

m(A ∪ B) +m(A ∩B) = m(A) +m(B).

Solution: 不妨设 m(A),m(B) < +∞，由可测集的定义有

m(A) = m(A ∩B) +m(A ∩ Bc),

和

m(A ∪ B) = m((A ∪ B) ∩B) +m((A ∪ B) ∩ Bc)

= m(B) +m(A ∩Bc).

于是
m(A) +m(B) +m(A ∩ Bc) = m(A ∪B) +m(A ∩ B) +m(A ∩ Bc),

即 m(A) = m(A ∩ B) +m(A ∩ Bc),

2.7. 设有递降可测集列 E1 ⊃ E2 ⊃ · · ·，若

m
( ∞∪

k=1

Ek

)
< +∞,

证明
m( lim

k→∞
Ek) ≥ lim

k→∞
m(Ek).

Solution: 由定义直接计算得到

m( lim
k→∞

Ek) = m
(

lim
j→∞

∞∪
k=j

Ek

)
= lim

j→∞
m
( ∞∪

k=j

Ek

)
≥ lim

k→∞
m(Ek).
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2.8. 若 H 为 E 的等测包，且 m∗(E) < +∞，证明 H\E 的任何可测子集均为零测集。

Solution: 任给可测集 A ⊂ H\E，都有 E ⊂ H\A，于是直接计算得到

m∗(E) = m(H)

= m(H\A) +m(A)

≥ m∗(E) +m(A),

于是 m(A) = 0.

2.9. 设 E ⊂ Rn，和可测集 H ⊃ E，若 H\E 的任何可测子集均为零测集，证明 m(H) = m∗(E).

Solution: 设 G 为 E 的等测包，则由 E ⊂ G 可以得到

H\G ⊂ H\E,

于是 m(H\G) = 0，所以
m(H) = m(G) = m∗(E).

2.10. 设可测集 E ⊂ Rn，证明对任意 ϵ > 0，存在开集 G1, G2 满足 G1 ⊃ E,G2 ⊃ Ec，使得

m(G1 ∩G2) < ϵ.

Solution: 对任意的 ϵ > 0，总是存在开集 G 和闭集 F 使得

m(G\E) <
ϵ

2
,m(E\F ) <

ϵ

2
.

我们取 G1 = G,G2 = F c，于是

m(G1 ∩G2) = m(G\F ) ≤ m(G\E) +m(E\F ) < ϵ.

Remark. 逆命题也是成立的。逆命题的证明我们需要一个引理：

Lemma 2.1. 设集合 E ⊂ Rn。若对任意 ϵ > 0，都存在开集 G ⊃ E 使得

m∗(G\E) < ϵ,

则 E 是勒贝格可测集。
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Proof. 取 ϵ = 1
n
，由条件可以构造开集集合列 {Gn} 使得 m∗(Gn\E) < 1

n
，我们取

H =
∞∩
n=1

Gn,

可知 E ⊂ H 并且

m∗(H\E) ≤ m∗(Gn\E) <
1

n
.

于是 m∗(H\E) = 0，所以 H\E 可测，而 E = H\(H\E)，所以 E 可测。

逆命题的证明：

Proof. 由条件可知

m∗(G1\E) ≤ m∗(G1\(G2)
c) = m(G1 ∩G2) < ϵ,

于是由引理 2.1可知 E 可测。

2.11. 设集合 E ⊂ Rn 和实值函数 f : E → R，同时 Γ 是 Rn 上的一个 σ-代数，且 E ∈ Γ，令

Ω = {A ⊂ R; f−1(A) ∈ Γ},

证明 Ω 是 R 上的 σ-代数。

Solution: 显然，∅ ∈ Ω。而对于 A ∈ Ω，有

f−1(Ac) = (f−1(A))c ∈ Γ,

所以 Ac ∈ Ω。同时对于集族 {An} 有

f−1
( ∞∪

n=1

An

)
=

∞∪
n=1

f−1(An) ∈ Γ,

所以
∞∪
n=1

An ∈ Ω,

所以 Ω 是 R 上的 σ-代数。
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3 第三章

3.1. 设 f(x) 在可测集 E ⊂ Rn 上有定义。若 f 2(x) 在 E 上可测，且 {x ∈ E : f(x) > 0} 为可测
集，证明 f(x) 在 E 上可测。

Solution: 由于

t > 0, {x ∈ E : |f(x)| > t} = {x ∈ E : f 2(x) > t2},

于是 |f | 是 E 上的可测函数。同时令

A := {x ∈ E : f(x) > 0}
B := {x ∈ E : f(x) ≤ 0}�

由
f(x) = |f(x)| · (χA(x)− χB(x))

即知 f 在 E 上的可测。

3.2. 若 {fk(x)} 是 E ⊂ Rn 上的可测函数列，证明 fk(x) 在 E 上收敛的点集是可测集。

Solution: 已知对于可测函数列，它的上极限和下极限都是可测函数，我们将 fk(x) 在
E 上收敛的点集记为 C，有

C = {x ∈ E : lim
k→∞

fk(x) = lim
k→∞

fk(x)}.

而令一个可测函数的函数值等于某个常数的值的点集都是可测的，所以 C 是可测的。

3.3. 设 f(x) 在 E ⊂ R 上可测，G 和 F 分别是 R 中的开集和闭集，证明点集

E1 = {x ∈ E : f(x) ∈ G}, E2 = {x ∈ E : f(x) ∈ F}

是可测集。

Solution: 已知 R 上的开集总是可以表作无交开区间的可数并，所以不妨设

G =
∪
n∈N

(an, bn).

于是
E1 =

∪
n∈N

({x ∈ E : f(x) > an} ∩ {x ∈ E : f(x) < bn}),
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而 f(x) 是可测的，所以 E1 是可测集。对于 E2，因为

E2 = E\{x ∈ E : f(x) ∈ F c},

而 F c 是开集，所以 E2 也是可测集。

3.4. 设 f(x), g(x) 均为 E ⊂ Rn 上的广义实值函数，且 f(x) 在 E 上可测。如果

f(x) = g(x), a.e.x ∈ E,

证明 g(x) 也在 E 上可测。

Solution: 证明的关键是对零测集的划分。
记

A = {x ∈ E : f(x) ̸= g(x)},

由题设知 m(A) = 0，于是 E\A 是可测集。于是对任给的 t ∈ R 有

{x ∈ E : g(x) > t} = {x ∈ E\A : g(x) > t} ∪ {x ∈ A : g(x) > t}
= {x ∈ E\A : f(x) > t} ∪ {x ∈ A : g(x) > t},

由于 f 在 E 上可测，并且零测集的子集还是零测集，于是 {x ∈ E : g(x) > t} 是可测集，
于是 g(x) 在 E 上可测。

3.5. 证明 Eg&orov 定理的逆定理：设 f(x), f1(x), f2(x), . . . , fk(x), . . . 为 E 上几乎处处有限的可
测函数，如果 {fk(x)} 在 E 上近一致收敛于 f(x)，则 {fk(x)} 在 E 上几乎处处收敛于 f(x).

Solution: 我们先回顾一下近一致收敛的定义：

Definition 3.1. 对任意 δ > 0，存在可测子集 Eδ ⊂ E 满足 m(Eδ) ≤ δ 并且 {fk(x)} 在
E\Eδ 上一致收敛于 f(x)，我们称 {fk(x)} 在 E 上近一致收敛于 f(x).

证明的关键是从近一致收敛中找到几乎处处收敛的那些地方。

取 δ = 1
n
, n ∈ N，由近一致收敛性我们知道 {fk(x)} 在 E\E 1

n
上一致收敛。我们令

E0 :=
∞∩
n=1

E 1
n
,

显然有 m(E0) = 0. 同时我们有

E\E0 =
∞∪
n=1

(E\E 1
n
),

因此 {fk(x)} 在 E\E0 上收敛于 f(x)，于是在 E 上几乎处处收敛于 f(x).
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3.6. 证明 Luzin 定理的逆定理：设 f(x) 为可测集 E ⊂ Rn 上的广义实值函数，若对任意的
δ > 0 存在 E 中闭集 F 使得 m(E\F ) < δ, 并且 f(x) 是 F 上的连续函数，则 f(x) 为 E 上
可测函数。

Solution: 关键是利用条件，让 f 在零测集外是可测函数，而 f 在零测集会自动可测，
于是 f 可测。

对任意的 k ∈ N，取 δ = 1
k
，得到一列闭集 Fk 使得 m(E\Fk) <

1
k
，并且 f 在每个 Fk 上

都连续。

因为可测集上的闭子集都是可测的，于是连续函数 f 在每个 Fk 上都可测。同时我们记

F :=
∞∪
k=1

Fk,

可知 f 在 F 上可测，并且 m(E\F ) = 0，于是由集合分解

E = (E\F ) ∪ F

知道，f 同时在 F 和 E\F 上可测，于是 f 在 E 上可测。

3.7. 设 {fk(x)}, {gk(x)} 在 E 上分别依测度收敛于 f(x), g(x)，证明 {fk(x) + gk(x)} 在 E 上依
测度收敛于 f(x) + g(x).

Solution: 注意到对任意的 ϵ > 0 都有

{x ∈ E : |(fk(x) + gk(x))− (f(x) + g(x))| > ϵ}

⊂ {x ∈ E : |fk(x)− f(x)| > ϵ

2
} ∪ {x ∈ E : |gk(x)− g(x)| > ϵ

2
},

而 {fk(x)}, {gk(x)} 在 E 上分别依测度收敛于 f(x), g(x)，即有

m({x ∈ E : |fk(x)− f(x)| > ϵ

2
}) → 0,

m({x ∈ E : |gk(x)− g(x)| > ϵ

2
}) → 0.

所以可知
m({x ∈ E : |(fk(x) + gk(x))− (f(x) + g(x))| > ϵ}) → 0,

即 {fk(x) + gk(x)} 在 E 上依测度收敛于 f(x) + g(x).
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3.8. 设 f(x), f1(x), f2(x), . . . , fk(x), . . . 为 E 上几乎处处有限的可测函数，m(E) < +∞。若
{fk(x)} 的任一子列 {fki(x)} 均存在几乎处处收敛于 f(x) 的子列，证明 {fk(x)} 在 E 上依
测度收敛于 f(x).

Solution: 采用反证法：若 {fk(x)}在 E 上不是依测度收敛于 f(x)，则存在 ϵ0 > 0, δ0 > 0
和一个子列 {ki} 使得

m({x ∈ E : |fki(x)− f(x)| > ϵ0}) ≥ δ0.

但是由题意我们知道存在子列 {kij} 使得

lim
j→∞

fkij (x) = f(x), a.e.x ∈ E,

而 f, {fk} 都是几乎处处有限的可测函数，并且 m(E) < +∞，于是 fkij 依测度收敛于 f，
但是这与我们的假设矛盾。

Remark. 矛盾之处在于：不依测度收敛指出对任意的 k ∈ N 都有子列 {ki} 使得测度大于
指定的数 δ0。而条件给出的子列的子列依测度收敛于 f(x) 使得可以存在某个 k ∈ N，使得
我们的测度无法大于指定的数 δ0.

3.9. 设可测集 E 上的可测函数列 {fk(x)} 在 E 上依测度收敛于可测函数 f(x)，且 fk(x) ≤
fk+1(x), ∀k ∈ N。证明 {fk(x)} 在 E 上几乎处处收敛于 f(x).

Solution: 由 Risez 定理知存在子列 {ki} 使得

lim
i→∞

fki(x) = f(x), a.e.x ∈ E,

而 {fk(x)} 是渐升列，它的极限函数应该与子列依测度收敛的函数对等，于是

lim
k→∞

fk(x) = f(x), a.e.x ∈ E.
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3.10. 设 {Ek} 为可测集列，同时

E :=
∞∪
k=1

Ek, m(E) < +∞.

若对每个 k ∈ N 都有函数列 {fn(x)} 在 Ek 上依测度收敛于 f(x)。证明 {fn(x)} 在 E 上依
测度收敛于 f(x).

Solution: 对于任给的 δ > 0, ϵ > 0 我们选取足够大的 K 使得

m(
∞∪

k=K+1

Ek) <
δ

2
,

同时由于函数列 {fn(x)} 在每个 Ek 都依测度收敛于 f(x)，于是我们可以选取 Nk，让每
个 k 在 n > Nk 的时候都有

m({x ∈ Ek : |fn(x)− f(x)| > ϵ}) < δ

2K
,

于是可以令 N = max{N1, . . . , Nk}，使得 k > N 时有

m({x ∈ E : |fn(x)− f(x)| > ϵ}) = m(
∞∪
k=1

{x ∈ Ek : |fn(x)− f(x)| > ϵ})

≤
K∑
k=1

m({x ∈ Ek : |fn(x)− f(x)| > ϵ}) +m(
∞∪

k=K+1

Ek)

<
K∑
k=1

δ

2K
+

δ

2
= δ.

于是 {fk(x)} 在 E 上依测度收敛于 f(x).
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4 第四章

4.1. 设 f(x) 为 E 上非负可测函数，则∫
E

f(x) dx = 0 ⇐⇒ f(x) = 0, a.e.x ∈ E.

Solution:

• 充分性是平凡的，我们记

E1 := {x ∈ E : f(x) ̸= 0}, E2 := E\E1,

由条件知 m(E1) = 0，于是立刻得到∫
E

f(x) dx =

∫
E

f(x) · (χE1(x) + χE2(x)) dx

=

∫
E1

f(x) dx+

∫
E2

f(x) dx

= 0.

• 对于必要性，我们的关键是证明 f(x) 那些不等于 0 的点构成的集合的测度为 0，
而 f(x) 是非负函数，于是我们记

Ek := {x ∈ E : f(x) ≥ 1

k
}, k ∈ N.

于是我们可以得到

∀k ∈ N,
∫
Ek

f(x) dx =

∫
E

f(x) · χEk
(x) dx ≤

∫
E

f(x) dx = 0,

同时

∀k ∈ N,
∫
Ek

f(x) dx ≥
∫
Ek

1

k
dx =

1

k
m(Ek) ≥ 0,

于是有
∀k ∈ N, m(Ek) = 0.

而
{x ∈ E : f(x) > 0} =

∪
k∈N

Ek,

于是有
m(

∪
k∈N

Ek) ≤
∑
k∈N

m(Ek) = 0.

因此 f(x) 在 E 上几乎处处为 0.
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4.2. 设 f(x) 为 E 上的非负可积函数，记

Ek := {x ∈ E : f(x) > k}, k ∈ N.

证明：

1. limk→∞ m(Ek) = 0;

2. limk→∞ k ·m(Ek) = 0.

Solution:

1. 因为 f(x) 在 E 上是非负可积的，所以有∫
Ek

f(x) dx =

∫
E

f(x) · χEk
(x) dx ≤

∫
E

f(x) dx < +∞

和 ∫
Ek

f(x) dx >

∫
Ek

k dx = k ·m(Ek).

于是可知
∀k ∈ N, k ·m(Ek) < +∞,

可以得到
lim
k→∞

m(Ek) = 0.

2. 由于 f(x) 在 E 上可积，所以是几乎处处有限的，因此不妨设

f(x) ≤ M.

于是直接计算有

k ·m(Ek) =

∫
Ek

k dx

<

∫
Ek

f(x) dx

≤
∫
Ek

M dx

= M ·m(Ek).

而已知
k ·m(Ek) ≥ 0, lim

k→∞
m(Ek) = 0.

因此得到
lim
k→∞

k ·m(Ek) = 0.
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4.3. 设 f(x), f1(x), f2(x), . . . , fk(x), . . . 均为 E 上的可测函数。若

lim
k→∞

∫
E

|fk(x)− f(x)| dx = 0,

则 {fk(x)} 在 E 上依测度收敛于 f(x).

Solution: 对任意的 ϵ > 0，记

Aϵ
k := {x ∈ E : |fk(x)− f(x)| > ϵ}.

于是有积分的单调性马上得到∫
E

|fk(x)− f(x)| dx ≥
∫
Aϵ

k

|fk(x)− f(x)| dx > ϵ ·m(Aϵ
k).

所以得到

∀k ∈ N, m(Aϵ
k) <

1

ϵ
·
∫
E

|fk(x)− f(x)| dx,

于是由极限的保号性得到

0 ≤ lim
k→∞

m(Aϵ
k) ≤ lim

k→∞

∫
E

|fk(x)− f(x)| dx = 0.

于是 {fk(x)} 在 E 上依测度收敛于 f(x).

Remark. 该题指出，L1 收敛蕴含了依测度收敛。

4.4. 设 f ∈ L(E)，∀k ∈ N, Ek ⊂ E 和

lim
k→∞

m(Ek) = m(E) < +∞.

证明

lim
k→∞

∫
Ek

f(x) dx =

∫
E

f(x) dx.

Solution: 由题意有
lim
k→∞

m(E\Ek) = 0,

于是由积分的绝对连续性可以得到

lim
k→∞

∫
E\Ek

f(x) dx = 0.
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而对于任意的 k ∈ N 都有∫
E

f(x) dx =

∫
Ek

f(x) dx+

∫
E\Ek

f(x) dx,

取极限即得 ∫
E

f(x) dx = lim
k→∞

∫
Ek

f(x) dx.

4.5. 设 {fk(x)} 为 E 上的非负可测函数列，并且 m(E) < +∞。证明 {fk(x)} 在 E 上依测度收
敛于 0，当且仅当

lim
k→∞

∫
E

fk(x)

1 + fk(x)
dx = 0.

Solution: 由于
fk(x)

1 + fk(x)
≤ 1,

由控制收敛定理可以得到

lim
k→∞

∫
E

fk(x)

1 + fk(x)
dx =

∫
E

lim
k→∞

fk(x)

1 + fk(x)
dx.

于是命题的证明等价于证明 {fk(x)} 在 E 上依测度收敛于 0，当且仅当

lim
k→∞

fk(x)

1 + fk(x)
= 0, a.e.x ∈ E.

• 充分性：由题设可知，对任意的 δ > 0, ϵ > 0 都存在 Eδ ⊂ E 和 N > 0 使得 k > N
时有

m(E\Eδ) < δ,
fk(x)

1 + fk(x)
< ϵ, x ∈ Eδ.

我们取 ϵ0 < 1，使得
ϵ =

ϵ0
1− ϵ0

,

于是可以得到
fk(x)

1 + fk(x)
< ϵ0 < ϵ ⇒ fk(x) < ϵ,

因此
m(Eδ) ≤ m({x ∈ E : fk(x) < ϵ}),

所以
m({x ∈ E : fk(x) ≥ ϵ}) ≤ m(E\Eδ) < δ,

即 fk(x) 在 E 上依测度收敛于 0.
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• 必要性：由于 fk(x) 依测度收敛于 0，所以对任意的 ϵ > 0, δ > 0 都存在 N 使得
k > N 时，有

m({x ∈ E : fk(x) ≥ ϵ}) < δ.

而

|fk(x)| < ϵ ⇒ fk(x)

1 + fk(x)
< ϵ,

于是此时取
Eδ = {x ∈ E : fk(x) ≥ ϵ},

此时对于任意的 x ∈ E\Eδ 都有

fk(x)

1 + fk(x)
< ϵ,

所以 fk(x)
1+fk(x)

在 E\Eδ 一致收敛于 0。此时已知 m(E) < +∞，所以

lim
k→∞

fk(x)

1 + fk(x)
= 0, a.e.x ∈ E.

4.6. 设 f(x) 为 E 上非负可测函数，令

fk(x) =

{
f(x), f(x) ≤ k

k, f(x) > k.

证明

lim
k→∞

∫
E

fk(x) dx =

∫
E

f(x) dx.

Solution: 简单计算可以得到，，对于任意的 k ≥ 1 都有

fk+1(x)− fk(x) =


0, f(x) < k

f(x)− k ≥ 0, k ≤ f(x) < k + 1

1, f(x) ≥ k + 1,

因此 {fk(x)} 是一个非负可测渐升函数列，并且有

lim
k→∞

fk(x) = f(x),

于是

lim
k→∞

∫
E

fk(x) dx =

∫
E

f(x) dx.
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4.7. 计算
lim
n→∞

∫
[0,n]

(
1 +

x

n

)n

e−2x dx =

∫
[0,+∞)

e−x dx.

Solution: 记
fn(x) =

(
1 +

x

n

)n

e−2xχ[0,n](x),

由经典极限
lim
n→∞

(
1 +

x

n

)n

= ex

的证明可知
fn(x) ≤ fn+1(x),

于是有

lim
n→∞

∫
[0,n]

(
1 +

x

n

)n

e−2x dx = lim
n→∞

∫
R
fn(x) dx =

∫
R

lim
n→∞

fn(x) dx

=

∫
R
e−xχ[0,+∞)(x) dx =

∫
[0,+∞)

e−x dx = 1.

4.8. 设 f ∈ L(E), fn ∈ L(E), n ∈ N. 若

lim
n→∞

fn(x) = f(x), x ∈ E,

同时
fn(x) ≤ fn+1(x), n ∈ N. (4.1)

证明

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.

Solution: 可以用控制收敛定理，取控制函数为 |f(x)|，那这题就结束了。但是我们还可
以使用别的方法：

令
Fn(x) := f(x)− fn(x),

我们得到了一个非负可积的渐降列 {Fn(x)}，于是有

lim
n→∞

∫
E

Fn(x) dx =

∫
E

lim
n→∞

Fn(x) dx = 0,

同时

lim
n→∞

∫
E

Fn(x) dx =

∫
E

f(x) dx− lim
n→∞

∫
E

fn(x) dx,
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于是得到

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.

4.9. 证明

1. 设 {fk(x)} 为 E 上的渐升可测函数列，若满足
∫
E
f1(x) dx > −∞, 则

lim
k→∞

∫
E

fk(x) dx =

∫
E

lim
k→∞

fk(x) dx > −∞.

2. 设 {fk(x)} 为 E 上的渐降可测函数列，若满足
∫
E
f1(x) dx < +∞, 则

lim
k→∞

∫
E

fk(x) dx =

∫
E

lim
k→∞

fk(x) dx < +∞.

Solution:

1. 显然，fk(x) 的正部 f+
k (x) 是满足非负渐升可测的，于是可以直接得到积分号和极

限号可交换。只需关注负部 f−
k (x)。由条件可以得到

f−
1 (x) ≥ f−

2 (x) ≥ · · · ≥ f−
k (x) ≥ · · · ,

而
∫
E
f−
1 (x) dx < +∞ 所以负部是可积渐降函数列，所以积分号和极限号可交换，

于是

lim
k→∞

∫
E

fk(x) dx =

∫
E

lim
k→∞

fk(x) dx > −∞.

2. 类似于 1.，负部是非负可测渐升列，所以积分号和极限号可交换。正部由题意可以
得到是非负可积渐降列，所以积分号和极限号可交换，于是

lim
k→∞

∫
E

fk(x) dx =

∫
E

lim
k→∞

fk(x) dx < +∞.
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